ARTIFICIAL INTELLIGENCE

4 YEAR SEM-1 BTECH MECHANICAL ENGINEERING (R18A1205)

MRCET CAMPUS

UGC Autonomous

www.mrcet.ac.in

UNIT-1

UNIT - | Introduction: Al problems, Agents and Environments,
Structure of Agents, Problem Solving Agents

Basic Search Strategies: Problem Spaces, Uninformed Search
(Breadth-First, Depth-First Search, Depth-first with Iterative
Deepening), Heuristic Search (Hill Climbing, Generic Best-First, A*),
Constraint Satisfaction (Backtracking, Local Search)

Introduction:

* Al is the universal field of computer science.

* It is one of the fascinating technology.

e Greatest scope in future

* It has a tendency to cause a machine to work as a human.

e Artificial--------- ” man made”

* Intelligence-------- the ability of making artificial thing----"thinking
power”

Al definition:

* |t is a branch of cs by which we can create an intelligent machine, which can
behave like a human and think like a human and able to make decisions.

* With Al, you do not need to pre-program a machine to do some work.

* Inspite you can programm a machine, which can work with own intelligence

* There are two ideas in the definition.
v'Intelligence [Ability to understand, think & learn]

v'Artificial device [Non Natural]

What is Al

e Artificial Intelligence (Al) is a branch of Science which
deals with helping machines find solutions to complex
problems in a more human-like fashion.

* This generally involves borrowing characteristics from
human intelligence, and applying them as algorithms in
a computer friendly way.

* A more or less flexible or efficient approach can be
taken depending on the requirements established,
which influences how artificial the intelligent behavior
appears

Structure Programming Vs Al

A program without Al can answer Al answers any question belonging
the "specific" questions it is meant toits "generic" type.
to answer

If you modify a structural program, Al programs are all about

its entire structure changes. modifications. They keep absorbing
the information provided to them
as stimuli for future referencing like
the human brain.

Artificial intelligence can be viewed from a
variety of perspectives.

* From the perspective of intelligence artificial intelligence is making
machines "intelligent" -- acting as we would expect people to act.

* The inability to distinguish computer responses from human
responses is called the Turing test.

* Intelligence requires knowledge

e Expert problem solving - restricting domain to allow including
significant relevant knowledge

* From a business perspective Al is a set of very powerful tools, and
methodologies for using those tools to solve business problems.

* From a programming perspective, Al includes the study of symbolic
programming, problem solving, and search.

* Typically Al programs focus on symbols rather than numeric processing.
* Problem solving - achieve goals.

e Search - seldom access a solution directly. Search may include a variety
of techniques.

Why Al

With the help of Al,

 We can create such amazing software's ---- a device which can solve
real-world problems accurately and easily.

* We can create our personal virtual assistances.

e We can build such robots whic
survival of human can be at a ris

* Al opens path for new tec
opportunities.

K.

hnologies,

n can work in a environment where

new devices and new

Goals:

* Replicate human intelligence
* Solve-knowledge intensive tasks
* An intelligent connection of perception and action.

* Building a machine which can perform tasks that requires human
intelligence
Providing theorem/algorithm
Plan some surgical operation
Playing chess
Driving car in traffic

* Creating some system which can exhibit intelligent behaviours.

History of Al

1943 Early Beginnings
Boolean Circuit model of Brains

1950: Turing
Turing’s computing Machinery and Intelligence

1956: Birth of Al
Dartmouth Conference: Artificial Intelligence name Adopted

1955-1965: Great Enthusiasm
GPS Solver [General Problem Solver]

1966:

1969-1985:

1986:

1990:

1995:

History of Al

Reality Dawns

Realization that many Al problems are intraceable

Adding Domain Knowledge

Development of knowledge based systems

Success of rule based expert systems

Rise of Machine Learning

Neural Networks return to popularity

Role of Uncertainty

Bayesian networks as a knowledge representation framework

Al as Science[Integration of learning, reasoning, knowledge
representation, Al methods used in vision, language and data mining.

Applications of Al

* Gaming - Al plays important role for machine to think of large number
of possible positions based on deep knowledge in strategic games.

* Natural Language Processing - Interact with the computer that
understands natural language spoken by humans

* Expert Systems — Machine or software provide explanation and advice
to the users.

Applications of Al

* Vision Systems - Systems understand, explain, and describe visual input
on the computer

* Speech Recognition — There are some Al based speech recognition
systems have ability to hear and express as sentences and understand
their meanings while a person talks to it.

* Handwriting Recognition — The handwriting recognition software reads
the text written on paper and recognize the shapes of the letters and
convert it into editable text.

* Intelligent Robots — Robots are able to perform the instructions given by a
human.

* Thinking Humanly: The Cognitive modeling Approach

* We can say that given program thinks like a human, we must have some
way of determining how humans think. i.e., we need to get inside the
actual working of human minds.

* There are 3 ways to do this;

e Through Introspection
Trying to catch our own Thoughts as they go by

e Through psychological experiments

Once we have a sufficiently precise theory of the mind,it becomes possible to
express the theory as computer programs.

If the programs input/output and timing behaviour matches human behaviour that
is the evidence.

* Brain Imaging
Observing the brain in action

* Acting Humanly: The Turing test Approach
* The Turing Test, proposed by Alan Turing (1950), was designed to

provide a satisfactory operational definition of intelligence.

e Here the computer is asking some questions by a human

interrogator.

* The computer passes the test if a human interrogator, after posing
some written questions, cannot tell whether the written responses

come from a person or not.

Acting Humanly

 The computer would need to possess the following capabilities:

* Natural language processing: Enable it to communicate
successfully in English.

* Knowledge representation: Store what it knows or hears.

* Automated reasoning: Use the stored information to answer
guestions and to draw new conclusions.

* Machine learning: To adapt to new circumstances and to detect
and extrapolate patterns.

* Computer vision: To perceive objects.
* Robotics: To manipulate objects and move about.

Al is composed of:

Intelllgence
.

Linguisic intelligence
Reasoning \ \

Learning Perception

Problem solving

* Reasoning: Set of process that enable us to provide logical thinking
* Learning: It is an activity of gaining knowledge

* Perception: It is a process of acquiring, interpreting and selecting and
even organizing the sensor information.

* Problem solving: It is the process of working through the details of a
problem to reach the solution.

* Linguistic intelligence: It is one’s ability to use comprehend speak and
write the verbal and written languages.

Importance of Al

* Game Playing

e Speech Recognition

* Understanding Natural Language
 Computer Vision(3D)

* Expert Systems(medical)

e Heuristic Classification(fraud detection)

The applications of Al

Consumer Marketing

* Have you ever used any kind of credit/ATM/store card while
shopping?

* if so, you have very likely been “input” to an Al algorithm
 All of this information is recorded digitally

* Companies like Nielsen gather this information weekly and search
for patterns

e —general changes in consumer behavior
* —tracking responses to new products

* —identifying customer segments: targeted marketing, e.g., they
find out that consumers with sports cars who buy textbooks
respond well to offers of new credit cards.

* Algorithms (“data mining”) search data for patterns based on
mathematical theories of learning

Applications of Al

|dentification Technologies

* |ID cards e.g., ATM cards

e can be a nuisance and security risk: cards can be lost, stolen, passwords forgotten, etc
Biometric Identification, walk up to a locked door

e —Camera

— Fingerprint device

— Microphone

— Computer uses biometric signature for identification

— Face, eyes, fingerprints, voice pattern

— This works by comparing data from person at door with stored library

— Learning al%_orithms can learn the matching process by analyzing a large library
database off-line, can improve its performance.

Applications of Al

Intrusion Detection
* Computer security

* - we each have specific patterns of computer use times of day,
lengths of sessions, command used, sequence of commands,
etc

—would like to learn the “signature” of each authorized user

— can identify non-authorized users o How can the program
automatically identify users?

— record user’s commands and time intervals

— characterize the patterns for each user

— model the variability in these patterns

— classify (online) any new user by similarity to stored patterns

Applications of Al

Machine Translation

* Language problems in international business —e.g., at a
meeting of Japanese, Korean, Vietnamese and Swedish
investors, no common language

e — |f you are shipping your software manuals to 127 countries,
the solution is ; hire translators to translate

—would be much cheaper if a machine could do this!
How hard is automated translation

—very difficult!

e —e.g., English to Russian

 —not only must the words be translated, but their meaning
also!

Intelligent Agent:
* Agents in Al:

Study of relational agents and its environment. i.e., agents scense the

environment through sensors and act on their environment through
actuators.

Ex: automatic self-driving car
Al agent can have mental properties like:
Knowledge,

Belief and intention etc...

Intelligent Agent’s: sensors

Must Sense
Must Act

Must be Autonomous(to some extent)
Must be rational

Fig 2.1: Agents and Environments

What is an agent?

* An agent can be anything, that perceive environment through sensors and act
up on that environment through actuators.

* Perceiving----------- thinking----------- acting
* Generally agent can be of 3 types:
Human agent

Robotic agent
Software agent ---- keystrokes (python —F5)

* Sensor: It is a device which detects the change in environment and
sends the information to the other electronic device.

* Actuators: It is a part or component of machine that converts energy
iInto motion

e Effectors: The device which effects the environment.

Different types of Al agents:

* Agent can be grouped int 5 classes based on their degree of perceived
intelligence and capacity.

Simple reflex agent
Model based reflex agent
Goal based agent

Utility based agent

Al S

Learning agent

* Simple reflex agent: This agent works only n the principle of current
perception. Works based on condition-action rule

I Simple reflex agents |

'{/;QEI"'I". Sensors g—i_ —\
¥

Vhat the world
is like now

JUSWUOJIAUT

(G-::-nl:l|1u::-|1—n-:1u::-|1 rules ——- mitk:lagtr_iﬁﬁr?alw
\ Effectors ﬁ—-—

* Model based reflex agent: It works by finding a rule whose condition
matches the current situation. Itt can handle actually observable
environments.

| Reflex agents with state |

Sensors —
l::: State }\

{Hnw the world ew.rnlu'es}—-— };‘*ﬂﬂfé trr‘;';:"-' orld
m
=
I:What my actions do E
o
=
=
1]
> o =S

<G-::-r1|:||1||::-r1—a-:1u::-|'| rules mitldagt:llﬂgalw

Agent Effectors — .\-:_/

* Goal based agent: It mainly focus on reaching the goal set and the
decision took by the agent is based on how far it is currently from the
goal and desired state.

| Goal-based agents |

_ Sansors —
< State D\h
- =~ Vihat the world
IM_HD'-.-'- the world evolvas is llloe MowW
¥ o
" Vihat it will be like -
I:What my actions do if | do action A =
L=
=
1 2
L1
' =
T Vihat action |
ZGMIEJ =1 should do now
Agent Effectors -
- . -

* Utility based agent: It is most similar to Goal-based agent but provides an
extra component f utility measurement which makes them difference by
providing a measure of success at a given state.

It is useful when there are multiple possible alternatives and agent
has to choose.

Utility-based agents
Ve ™
Sensors -
(state I~

:

What the world
(Haw the world evolvas 5 lidom oW

[] o
: What it will be like =
I::What my actions do if | do action A =
¥ o
— How happy | will be =
(utilty | MY state K
L] 3
Vihat action | —_—

should do now

'

Ag&nt Effectors -

N

 Learning agent: It learns from past experience.

It starts with basic knowledge and able to act, automatic adaptability
through learning.

* Learning agent mainly focus on four conceptual components:
1. Learning elements

2. Critic elements

3. Performance element

4. Problem generator

Pesrformarce starndart

Critic F Sensors -

feadback m

—

A , Chvanges " A -

Learning Performance —

eement | element o

knowledge _— 5

earning //” o

QO als g =

. //' » —
Probiem |- EfTectors . -

e example-the vacuum-cleaner world shown in Fig

This particular world has just two locations: squares A and B. The vacuum agent
perceives which square it is in and whether there is dirt in the square. It can choose
to move left, move right, suck up the dirt, or do nothing. One very simple agent
function is the following: if the current square is dirty, then suck, otherwise move
to the other square. A partial tabulation of this agent function is shown in

A B e ™
e -

[B, Dirty]
©00 S0 =
m G mﬂ [A, Clean], [A, Clean]
soQ saoQ
[A, Clean], [A, Dirty]

1.Vaccum cleaner 2. Agent Function

The REFLEX-VACCUM-AGENT program is invoked for each new percept
(location, status) and returns an action each time.

Function REFLEX-VACCUM-AGENT ([location, status]) returns an action

If status=Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

* Task environments:

« We must think about task environments, which are essentially the "problems" to which rational
agents are the "solutions."

* Specifying the task environment (PEAS)

The rationality of the simple vacuum-cleaner agent, needs specification of
* The performance measure

* The environment

* The agent's actuators and sensors.

PEAS:

All these are grouped together under the heading of the task environment. We call
this the PEAS (Performance, Environment, Actuators, and Sensors)
description. In designing an agent, the first step must always be to specify the task
environment as fully as possible.

Performance

Measure

Steerin ameras, sonar,
Safe: fast, legal, | Roads, other traffic, &

accelerator, Speedometer, GPS,

comfortable trip, | pedestrians,

brake, Signal, horn, .
MBI L Odometer, engine

maximize profits customers display
sensors, keyboards,

accelerometer

Taxi driver

* Properties of task environments:

* Fully observable vs. partially observable
e Deterministic vs. stochastic

* Episodic vs. sequential

e Static vs. dynamic

* Discrete vs. continuous

* Single agent vs. Multiagent

Problem Solving Using Search

STATE
SPACE
SEARCH

Problem Solving by Search

* Problem searching:

In general searching refers to finding information for one needs.
Searching is most commonly used technique of problem solving in Al.
* Generally to build a system, to solve a problem what we need:

1. Define (Initial situation)

2. Analyzing (techniques)

3. Isolate and represent

4. Choose the best solution

5. Implementation

This is also called as problem space which defines the the various
components that go into creating a resolution for a problem and also includes

the above 5 points as stages of problem space.

* For example problem solving in games, “SUDOKU PUZZLE"”
It is done by building an Al system.

To do this first we define the problem statement and generating the
solution and keeping the condition in mind.

* Some of the problem solving techniques which helps Al are:
1. Chess

2. Travelling sales man problem

3. N-Queen problem

Flow chart:

@:ihe the pr@

v

@Ficatih L=l ¥ 5@

@ﬂg the SlutD
ImplementatimD

Problem-Solving Agents: Introduction

u In which we see how an agent can find a sequence of actions that
achieves its goals, when no single action will do.

m The method of solving problem through Al involves the process of

defining the search space, deciding start and goal states and then
finding the path from start state to goal state through search space.

m State space search is a process used in the field of computer science.
including artificial intelligence(Al), n which successive
configurations or states of an instance are considered, with the goal of
finding a goal state with a desired property.

* This is a one-kind of goal-based agent (use structured representation)
called a problem-solving agent or rational agent.

* Problem-solving agent use atomic representations, states of the world

are considered as wholes, with no internal structure visible to the
problem solving algorithms.

The major difference between intelligent and problem solving agent is:
* Intelligent agent maximize the performance

* Problem-solving agents find sequence of actions.
Ex: shortest route path algorithm

Functionality of Problem-Solving Agents:

[Goal Formulation

i

Problem Formulation

J
L - J
(=)
| J
(J

i

Solution

|

Execution

e Goal Formulation:

Problem-solving is about having a goal we want to reach (Ex: we want to
travel from A --—---- E)

* Problem Formulation:

A problem formulation is about deciding what actions and states to consider.
* Search:

The process of finding the a sequence is called search.

* Solution and execute:

Once the solution is found from different aspects through search
recommendation , that sequence of actions will help to carry out the
execution.

* Problem-solving agent now simply designed as:
Formulate------ search------ execute

A problem can be defined formally by 4 components:
1.Initial state

= 118 the stawe from which our agents start solving the problem

2.State description

a description of the possible actions available 1o the agent, it 1s common to describe it by means
of a successor function, given state x then SUCCESSOR-FNix) retumns a sct of ordered pairs
<action, successor> where action 1s a legal action from state x and successor 1s the state in
which we can be by applying acrion.

The initial state and the successor function together defined what is called state space which 1s
the set of all possible states reachable from the mital state jea: m{A), in(B), in(C), in(D),
m(E)].

3.Goal test

- we should be able to decide whether the current state 1s a goal state |e.1: is the current state is
in(E)?),

4.Path cost

a function that assigns o numeric value to cach path, each step we take in solving the problem
should be somehow weighted, so If | travel from A to E our agent will pass by many cities, the
cost to travel between two consecutive cities should have some cost measure, je.r Traveling from

‘A to ‘B’ costs 20 km or it can be typed as ¢(A, 20, B)).

A solution to a problem is path from the intial state to a goal state, and solution quality i
measured by the path cost, and the optimal solution has the lowest path cost among all possible

solutions.

Goal Directed Agent

Definitions

Definitions

Definitions

Definitions

Search Problem

Search Problem

Searching Process

State Space

Pegs and Disks

8 Queens

8 Queens Solution

N Queens Problem Formulation 1

N Queens Problem Formulation 2

N Queens Problem Formulation 3

by this one, we can keep th?quee?in thE] .

[.1—:\ """" =

position, WE (Subtitles/closed captions (c) 2, WE

Other Examples:

Vacuum World

. OQurvacuumcanbe m any o of e B astes shown n e octum

Sate description.

® Swcocssor function genarates legal states resulting from applying the
three actions | Left, Right, and Suck).

® The states space 1s shown in the picture, there are § world states,
- Goal text:
m Checks whether all sguares are clean

Path cost;

® Each step costs |, so the puth cost is the sum of steps in the path,

dsura 19

38-Puzzle

Ininal state:
Our board can be in any state resulting from making it in any configuration.
Sate description:

Successor function generstes Jegal stutes resulnng from applving the three actions {move blank Up, Down,
Left, or Right).

State description specifics the Jocation of cach of the cight tithes and the blank

Conl st

Checks whether the states matches the goal configured in the goal state shown in the picture.
Path cost:

Fach step costs 1, so the path cost is the sum of steps in the path,

Real World Problems

m Airline Travelling Problem

h is represented by a location and the current time

/"/, s nerrurns e sties resuwiitine friom f,,ni,',‘l' Uy N h(‘./“.’(4/' {]“"hf 1'\ J ny |';""| rFihan Ine urmnn

ime plus the within atrport transit time, from the current airport io another.
ve at the destination by some pre-specified tim

flight time, customs and immigration procedu

NS ."1/'(ndas ovr the moneiary Cost, waiane rime

| .iu'.’flilf. Ul "'u'u"lc'. f.;' of au /’l‘./‘l nm l/lll ni H.: ; IHH;IU'LI’A Y| ...-.."\ .'A'h'.'l;'

Different types of search strategies:

* Search strategies can be :
Uninformed search strategies
Informed search strategies

* Uninformed search strategies: These are also called as Blind search. These
search strategies use only the information available in the problem
definition. (This includes Breadth-first search, Uniform cost search, Depth-
first search, Iterative deepening depth-first search and Bidirectional
Search)

Informed search strategies: These are also called as Heuristic search. These
search strategies use other domain specific information. (This includes Hill
climbing, Best-first, Greedy Search and A* Search)

Search strategies classification:

Search Strategies

e 4 Breadth-First

— I

Depth-First with
___ _} Iterative eepening

Difference between uninformed and informed

search:

Un -Informed Search

1 Nodes in the state are secarched
mcchamcally. until the goal is reach or
time limit is over / failure occurs.

Info about goal state may not be given

3. Blind grouping is done
4. Search efficiency is low.

5. Practical limits on storage available for

blind methods.

6. lxnpractical to solve very largc problcms.

7. Best solution can be achieved.

E. g DFS . BFS . Branch & Bound . Iterative
Decpcnmg .2

Informed Search

! More info. About initial state &
operators is available . Search time
is less,

s

Some info. About goal is al“’a_\‘s

gi\‘en.
3 Based on heuristic methods
4. Searching is fast

v

Less computation rcquired
& Can handle large search problems

7. Mostly a good enough solution is
accepted as optimal solution.

E.g: Best first search .A* _(AO *_hill
climbing. .. etC

Search Algorithm Terminologies:

e Search

u Search problem may have three factors: search space, start
state, goal state

e Search tree

* Actions

* Transition model
* Path cost

e solution

* Optimal solution

Properties of Search Algorithms:

* Following are the four essential properties of search algorithms to compare the
efficiency of these algorithms:

* Completeness: A search algorithm is said to be complete if it guarantees to
return a solution if at least any solution exists for any random input.

* Optimality: If a solution found for an algorithm is guaranteed to be the best
solution (lowest path cost) among all other solutions, then such a solution for is
said to be an optimal solution.

* Time Complexity: Time complexity is a measure of time for an algorithm to
complete its task.

* Space Complexity: It is the maximum storage space required at any point during
the search, as the complexity of the problem.

Definition of search problem:

» a search problem 1s defined by:

— a state space (1.e., an 1nitial state or set of initial states and a set of
operators)

—a set of goal states (listed explicitly or given implicitly by means
of a property that can be applied to a state to determine if it 1s a
goal state)

» a solution 1s a path 1n the state space from an initial state to a goal state

Exploring the state space:

« search 1s the process of exploring the state space to find a solution
« exploration starts from the initial state

« the search procedure applies operators to the initial state to generate
one or more new states which are hopefully nearer to a solution

» the search procedure 1s then applied recursively to the newly generated
states

« the procedure terminates when either a solution 1s found, or no
operators can be applied to any of the current states

Search Trees:

» the part of the state space that has been explored by a search procedure
can be represented as a search tree

= nodes in the search tree represent parhs from the initial state (i.e.,
partial solutions) and edges represent operator applications

» the process of generating the children of a node by applying operators
1s called expanding the node

 the branching factor of a search tree 1s the average number of children
of each non-leaf node

» if the branching factor is b, the number of nodes at depth d is 54

Breadth-First search (BFS):

« proceeds level by level down the search tree

« first explores all paths of length 1 from the root node, then all paths of
length 2, length 3 etc.

« starting from the root node (initial state) explores all children of the
root node, left to right

 1f no solution 1s found, expands the first (leftmost) child of the root
node, then expands the second node at depth 1 and so on ...

* |t is the most common search strategy for traversing a tree or graph

* This algorithms searches in breadth-wise in a tree/graph, so it is
called as breadth-first search

* BFS algorithm starts searching from the root node of the tree and
expand all nodes (successor nodes) at the current state before
moving to the next node of next level

* BFS is implemented using FIFO queue DS

Example:

———
K2,
%!

GOAL Nuqil> @

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

e Let us see how the BFS is following the FIFO order (FIRST IN FIRST OUT):

° A-—-- start node (check the possibilities for node A) i.e A is first entered into
gueue

A
__LEVELO
BC START NOD
CDE LEVEL 1
DEFG
EEGH C{ @ LEVEL 2
FG H | LEVEL 3
GHIJ @
HIJ
11K LEVEL 4

ik GOAL NDE> @

K ----- GOAL NODE

* Time complexity: This is obtained by the no of nodes traverse in BFS
until the shallowest little depth

* Let d is the depth of shallowest
* Let b is the node at every state
Then T(b)= B+B2+...+Bd=0(BY)

Space complexity: It is given by memory complexity i.e., the memory
required to store each node

Then s(b)=0(B9)
Completeness: BFS is complete
Optimal: Yes it is optimal

Example BFS:

* Find the route path from S to E using BFS

* Expand all possibilities from each and every node.

» After expanding with all possibilities the below one is the tree
representation with start node A and final node E.

e Based on the path cost the path should be SBE (or) SCE

level O

start node

level 1

S
%@gg -

level 3

* Let us see how the BFS is following the FIFO order (FIRST IN FIRST
OUT):

¢S ——-- start node (check the possibilities for node S) i.e S is first
entered into queue

S
ABC
-BCD
CDDE
DDEE
DEEE
EEEE

_EEE
EE

E - goal node reached

Breadth First Search

()

® ®

©

front

FIFO Queue

Depth-First search

* DFS may be recursive or non recursive algorithm.
* |t is a recursive algorithm for traversing a tree / graph

* In this it starts from the root node and follows each path of its
greatest depth node before moving to next path. That’s the reason to
call it as DFS.

* So it travels from top to bottom direction but not like BFS.
* DFS uses stack DS (LIFO) for its implementation.
* The process is similar to BFS algorithm.

* Advantages:

1. It requires less memory as it only needs to store a stack of the
nodes on the path from root node to current node.

2. |t takes less time to reach to the goal node than BFS alg

Disadvantages:

1. There is a chance of re-occurring of many states and there is no
guarantee of finding the solution.

2. DFS alg goes for deep down searching and sometimes it may go to
infinite loop

Example: DFS

START NIDE__ (3 level 0

__leveld1

level 2

g _leveld

GOAL NODE

START NIDE_____(5) level 0

level 1

level 2

g o

GOAL NODE

* It starts searching from the root nodes.
* So starts traversing from root node ‘S’.
* The visited nodes will be pushed into the stack by checking their successor

nodes (i.e A and H) “

* Then it traverse to A (visited and successor nodes are B & C) C
* Traverse from A ----- B (visited and successor nodes are D&E) E - pop
* Traverse from B ----- D (visited and no successor nodes) D ---- pop
* Since there are no expanded nodes so it will be popped B

from the stack and starts backtracking.
Now traverse back to “B”, since it is already visited check it
successor node i.e “E” (visited and no successor nodes) stack

* Since there are no expanded nodes so it will be popped
from the stack and starts backtracking.

 Now traverse back to “B” then to “A”, but is visited and check for
successor nodes which are not visited.

e “A” has successor node “C” (visited and successor nodes are G)

* Traverse from C --- G (visited and no successor nodes.)

* “G” is the goal node and stops searching when reaches goal node
* Since there are no expanded nodes so it will be popped

from the stack

 The DFS is not done because in stack we have some nodes,
When all the stack elements are popped out

i.e., stack should be empty then only we can say that B ---- pop
DFS is terminated. A ----pop
* Before popping out check the node with its successors > ™ Pop
Whether all visited or not. If visited pop out one by one
Until the stack is empty

Output: SABDECG

* Completeness: Yes, Complete with in finite state space.
* Time complexity: T(n)= 1+n2+nd3+........... +nm

Hence T(n)=0(n™

m----- max depth of any node

* Space complexity: O(b™
b --——-- is level of the tree
e Optimal: non-optimal (due o infinite loops)

Example 2:

start node

e Start node is “A”

* A---————-- B,S (possible nodes from A) ,
* Traverse from A --- B E
----- pop
* Traverse from A --- S (C,G possible nodes from S) C
* Traverse from S ---- C (D,E,F possible nodes from C) >
B ----pop
* Traverse from C ------ D (no possible nodes, just pop it out)
* Traverse from C ------ E (H possible node from E) ek
* Traverse from E ------ H (G possible node from H)
. F - POP
* Traverse from H ----- G (F possible node from G) G - pop
* Traverse from G ----- F () H — pop
Output : ABSCDEHGF C
S pop

DLS: Depth Limited search

* It is similar to DFS with a predetermined limit

* It also solves the problem of infinite path (DFS)
* Always treats the depth has no successor nodes
* DLS can be terminated in 2 conditions:

One is during standard failure value

Second one is cut-off failure value

Advantages:

Memory efficient

* Disadvantages:
* Incompleteness and not optimal

start node

* In the given diagram consider my o 1
limit is level -2 //.\ % o
* If my goal is found or not found

in the limit DLS terminates %Dal " et

Time complexity is: =O(b})
Of course in the above diagram we are
following the concept of DFS but not
moving beyond the search . i.e., it avoids

infinite path in DLS which is n disadvantage
of DFS

Space complexity is: O(b*L)

'terative deepening depth-first search:

* [terative deepening is the preferred uninformed search method.
When the search space is large and the depth of the solution is not
Known.

* It is often used in combination with DFS, that finds the best depth-
imit. This can be done by gradually increasing the limiti.e., First ---0,
then 1 and so on...... until a goal is found.

* |terative deepening combines the benefits of DFS and BFS.

 Description:
It Is a search strategy resulting when you combine BFS and DFS, thus

combining the advantages of each strategy, taking the comp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>