
www.mrcet.ac.in

ARTIFICIAL INTELLIGENCE

4 YEAR SEM-1 BTECH MECHANICAL ENGINEERING (R18A1205)

UNIT-1
UNIT - I Introduction: AI problems, Agents and Environments,

Structure of Agents, Problem Solving Agents
 Basic Search Strategies: Problem Spaces, Uninformed Search

(Breadth-First, Depth-First Search, Depth-first with Iterative

Deepening), Heuristic Search (Hill Climbing, Generic Best-First, A*),

Constraint Satisfaction (Backtracking, Local Search)

Introduction:
• AI is the universal field of computer science.

• It is one of the fascinating technology.

• Greatest scope in future

• It has a tendency to cause a machine to work as a human.

• Artificial---------” man made”

• Intelligence-------- the ability of making artificial thing----”thinking
power”

AI definition:
• It is a branch of cs by which we can create an intelligent machine, which can

behave like a human and think like a human and able to make decisions.

• With AI, you do not need to pre-program a machine to do some work.

• Inspite you can programm a machine, which can work with own intelligence

• There are two ideas in the definition.

Intelligence [Ability to understand, think & learn]

Artificial device [Non Natural]

What is AI
• Artificial Intelligence (AI) is a branch of Science which

deals with helping machines find solutions to complex
problems in a more human-like fashion.

• This generally involves borrowing characteristics from
human intelligence, and applying them as algorithms in
a computer friendly way.

• A more or less flexible or efficient approach can be
taken depending on the requirements established,
which influences how artificial the intelligent behavior
appears

Structure Programming Vs AI

Structured Programming Artificial Intelligence

A program without AI can answer
the "specific" questions it is meant
to answer

AI answers any question belonging
to its "generic" type.

If you modify a structural program,
its entire structure changes.

AI programs are all about
modifications. They keep absorbing
the information provided to them
as stimuli for future referencing like
the human brain.

Artificial intelligence can be viewed from a
variety of perspectives.
• From the perspective of intelligence artificial intelligence is making

machines "intelligent" -- acting as we would expect people to act.

• The inability to distinguish computer responses from human
responses is called the Turing test.

• Intelligence requires knowledge

• Expert problem solving - restricting domain to allow including
significant relevant knowledge

• From a business perspective AI is a set of very powerful tools, and
methodologies for using those tools to solve business problems.

• From a programming perspective, AI includes the study of symbolic
programming, problem solving, and search.

• Typically AI programs focus on symbols rather than numeric processing.

• Problem solving - achieve goals.

• Search - seldom access a solution directly. Search may include a variety
of techniques.

Why AI:
With the help of AI,

• We can create such amazing software's ---- a device which can solve
real-world problems accurately and easily.

• We can create our personal virtual assistances.

• We can build such robots which can work in a environment where
survival of human can be at a risk .

• AI opens path for new technologies, new devices and new
opportunities.

Goals:
• Replicate human intelligence

• Solve-knowledge intensive tasks

• An intelligent connection of perception and action.

• Building a machine which can perform tasks that requires human
intelligence

Providing theorem/algorithm

Plan some surgical operation

Playing chess

Driving car in traffic

• Creating some system which can exhibit intelligent behaviours.

History of AI
• 1943: Early Beginnings

 Boolean Circuit model of Brains

• 1950: Turing

 Turing’s computing Machinery and Intelligence

• 1956: Birth of AI

 Dartmouth Conference: Artificial Intelligence name Adopted

• 1955-1965: Great Enthusiasm

 GPS Solver [General Problem Solver]

History of AI
• 1966: Reality Dawns

 Realization that many AI problems are intraceable

• 1969-1985: Adding Domain Knowledge

 Development of knowledge based systems

 Success of rule based expert systems

• 1986: Rise of Machine Learning

 Neural Networks return to popularity

• 1990: Role of Uncertainty

 Bayesian networks as a knowledge representation framework

• 1995: AI as Science[Integration of learning, reasoning, knowledge
 representation, AI methods used in vision, language and data mining.

Applications of AI

• Gaming − AI plays important role for machine to think of large number
of possible positions based on deep knowledge in strategic games.

• Natural Language Processing − Interact with the computer that
understands natural language spoken by humans

• Expert Systems − Machine or software provide explanation and advice
to the users.

Applications of AI
• Vision Systems − Systems understand, explain, and describe visual input

on the computer

• Speech Recognition − There are some AI based speech recognition
systems have ability to hear and express as sentences and understand
their meanings while a person talks to it.

• Handwriting Recognition − The handwriting recognition software reads
the text written on paper and recognize the shapes of the letters and
convert it into editable text.

• Intelligent Robots − Robots are able to perform the instructions given by a
human.

• Thinking Humanly: The Cognitive modeling Approach

• We can say that given program thinks like a human, we must have some
way of determining how humans think. i.e., we need to get inside the
actual working of human minds.

• There are 3 ways to do this;

• Through Introspection
Trying to catch our own Thoughts as they go by

• Through psychological experiments

 Once we have a sufficiently precise theory of the mind,it becomes possible to
express the theory as computer programs.

 If the programs input/output and timing behaviour matches human behaviour that
is the evidence.

• Brain Imaging

 Observing the brain in action

• Acting Humanly: The Turing test Approach

• The Turing Test, proposed by Alan Turing (195O), was designed to

provide a satisfactory operational definition of intelligence.

• Here the computer is asking some questions by a human

interrogator.

• The computer passes the test if a human interrogator, after posing

some written questions, cannot tell whether the written responses

come from a person or not.

Acting Humanly
• The computer would need to possess the following capabilities:

• Natural language processing: Enable it to communicate
successfully in English.

• Knowledge representation: Store what it knows or hears.

• Automated reasoning: Use the stored information to answer
questions and to draw new conclusions.

• Machine learning: To adapt to new circumstances and to detect
and extrapolate patterns.

• Computer vision: To perceive objects.

• Robotics: To manipulate objects and move about.

AI is composed of:

• Reasoning: Set of process that enable us to provide logical thinking

• Learning: It is an activity of gaining knowledge

• Perception: It is a process of acquiring, interpreting and selecting and
even organizing the sensor information.

• Problem solving: It is the process of working through the details of a
problem to reach the solution.

• Linguistic intelligence: It is one’s ability to use comprehend speak and
write the verbal and written languages.

Importance of AI

• Game Playing

• Speech Recognition

• Understanding Natural Language

• Computer Vision(3D)

• Expert Systems(medical)

• Heuristic Classification(fraud detection)

The applications of AI
Consumer Marketing

• Have you ever used any kind of credit/ATM/store card while
shopping?

• if so, you have very likely been “input” to an AI algorithm

• All of this information is recorded digitally

• Companies like Nielsen gather this information weekly and search
for patterns

• – general changes in consumer behavior

• – tracking responses to new products

• – identifying customer segments: targeted marketing, e.g., they
find out that consumers with sports cars who buy textbooks
respond well to offers of new credit cards.

• Algorithms (“data mining”) search data for patterns based on
mathematical theories of learning

Applications of AI

Identification Technologies

• ID cards e.g., ATM cards

• can be a nuisance and security risk: cards can be lost, stolen, passwords forgotten, etc

• Biometric Identification, walk up to a locked door

• – Camera

• – Fingerprint device

• – Microphone

• – Computer uses biometric signature for identification

• – Face, eyes, fingerprints, voice pattern

• – This works by comparing data from person at door with stored library

• – Learning algorithms can learn the matching process by analyzing a large library
database off-line, can improve its performance.

Applications of AI
Intrusion Detection

• Computer security

• - we each have specific patterns of computer use times of day,
lengths of sessions, command used, sequence of commands,
etc

• – would like to learn the “signature” of each authorized user

• – can identify non-authorized users o How can the program
automatically identify users?

• – record user’s commands and time intervals

• – characterize the patterns for each user

• – model the variability in these patterns

• – classify (online) any new user by similarity to stored patterns

Applications of AI
Machine Translation

• Language problems in international business – e.g., at a
meeting of Japanese, Korean, Vietnamese and Swedish
investors, no common language

• – If you are shipping your software manuals to 127 countries,
the solution is ; hire translators to translate

• – would be much cheaper if a machine could do this!

• How hard is automated translation

• – very difficult!

• – e.g., English to Russian

• – not only must the words be translated, but their meaning
also!

Intelligent Agent:
• Agents in AI:

Study of relational agents and its environment. i.e., agents scense the
environment through sensors and act on their environment through
actuators.

Ex: automatic self-driving car

AI agent can have mental properties like:

Knowledge,

Belief and intention etc…

Intelligent Agent’s:

Must Sense

Must Act

Must be Autonomous(to some extent)

Must be rational

Fig 2.1: Agents and Environments

What is an agent?
• An agent can be anything, that perceive environment through sensors and act

up on that environment through actuators.

• Perceiving-----------thinking-----------acting

• Generally agent can be of 3 types:

Human agent

Robotic agent

Software agent ---- keystrokes (python –F5)

• Sensor: It is a device which detects the change in environment and
sends the information to the other electronic device.

• Actuators: It is a part or component of machine that converts energy
into motion

• Effectors: The device which effects the environment.

Different types of AI agents:
• Agent can be grouped int 5 classes based on their degree of perceived

intelligence and capacity.

1. Simple reflex agent

2. Model based reflex agent

3. Goal based agent

4. Utility based agent

5. Learning agent

• Simple reflex agent: This agent works only n the principle of current
perception. Works based on condition-action rule

• Model based reflex agent: It works by finding a rule whose condition
matches the current situation. Itt can handle actually observable
environments.

• Goal based agent: It mainly focus on reaching the goal set and the
decision took by the agent is based on how far it is currently from the
goal and desired state.

• Utility based agent: It is most similar to Goal-based agent but provides an
extra component f utility measurement which makes them difference by
providing a measure of success at a given state.

 It is useful when there are multiple possible alternatives and agent
 has to choose.

• Learning agent: It learns from past experience.

 It starts with basic knowledge and able to act, automatic adaptability
through learning.

• Learning agent mainly focus on four conceptual components:

1. Learning elements

2. Critic elements

3. Performance element

4. Problem generator

• example-the vacuum-cleaner world shown in Fig

This particular world has just two locations: squares A and B. The vacuum agent
perceives which square it is in and whether there is dirt in the square. It can choose
to move left, move right, suck up the dirt, or do nothing. One very simple agent
function is the following: if the current square is dirty, then suck, otherwise move
to the other square. A partial tabulation of this agent function is shown in pt Sequence
• Action
• [A, Clean] • Right • [A, Dirty] • Suck • [B, Clean] • Left • [B, Dirty] • Suck • [A, Clean], [A, Clean] • Right • [A, Clean], [A, Dirty] • Suck • …
•

1.Vaccum cleaner 2. Agent Function

• The REFLEX-VACCUM-AGENT program is invoked for each new percept
(location, status) and returns an action each time.

• Function REFLEX-VACCUM-AGENT ([location, status]) returns an action

• If status=Dirty then return Suck

• else if location = A then return Right

• else if location = B then return Left

• Task environments:

• We must think about task environments, which are essentially the "problems" to which rational
agents are the "solutions."

• Specifying the task environment (PEAS)

The rationality of the simple vacuum-cleaner agent, needs specification of

• The performance measure

• The environment

• The agent's actuators and sensors.

PEAS:

All these are grouped together under the heading of the task environment. We call

this the PEAS (Performance, Environment, Actuators, and Sensors)

description. In designing an agent, the first step must always be to specify the task

environment as fully as possible.

Agent

Type

Performance

Measure

Environments Actuators Sensors
Ta

xi
 d

ri
ve

r

Safe: fast, legal,

comfortable trip,

maximize profits

Roads, other traffic,

pedestrians,

customers

Steering,

accelerator,

brake, Signal, horn,

display

Cameras, sonar,

Speedometer, GPS,

Odometer, engine

sensors, keyboards,

accelerometer

• Properties of task environments:

• Fully observable vs. partially observable
• Deterministic vs. stochastic
• Episodic vs. sequential
• Static vs. dynamic
• Discrete vs. continuous
• Single agent vs. Multiagent

STATE
SPACE

SEARCH

Problem Solving Using Search

Problem Solving by Search
• Problem searching:

In general searching refers to finding information for one needs.

Searching is most commonly used technique of problem solving in AI.

• Generally to build a system, to solve a problem what we need:

1. Define (Initial situation)

2. Analyzing (techniques)

3. Isolate and represent

4. Choose the best solution

5. Implementation

This is also called as problem space which defines the the various
components that go into creating a resolution for a problem and also includes
the above 5 points as stages of problem space.

• For example problem solving in games, “SUDOKU PUZZLE”

 It is done by building an AI system.

 To do this first we define the problem statement and generating the
 solution and keeping the condition in mind.

• Some of the problem solving techniques which helps AI are:

1. Chess

2. Travelling sales man problem

3. N-Queen problem

Flow chart:

Problem-Solving Agents: Introduction

• This is a one-kind of goal-based agent (use structured representation)
called a problem-solving agent or rational agent.

• Problem-solving agent use atomic representations, states of the world
are considered as wholes, with no internal structure visible to the
problem solving algorithms.

The major difference between intelligent and problem solving agent is:

• Intelligent agent maximize the performance

• Problem-solving agents find sequence of actions.

Ex: shortest route path algorithm

Functionality of Problem-Solving Agents:

• Goal Formulation:

Problem-solving is about having a goal we want to reach (Ex: we want to
travel from A ------ E)

• Problem Formulation:

A problem formulation is about deciding what actions and states to consider.

• Search:

The process of finding the a sequence is called search.

• Solution and execute:

Once the solution is found from different aspects through search
recommendation , that sequence of actions will help to carry out the
execution.

• Problem-solving agent now simply designed as:

Formulate------search------execute

A problem can be defined formally by 4 components:

1.Initial state

2.State description

3.Goal test

4.Path cost

Goal Directed Agent

Definitions

Definitions

Definitions

Definitions

Search Problem

Search Problem

Searching Process

State Space

Pegs and Disks

8 Queens

8 Queens Solution

N Queens Problem Formulation 1

N Queens Problem Formulation 2

N Queens Problem Formulation 3

Other Examples:

Different types of search strategies:
• Search strategies can be :

Uninformed search strategies

Informed search strategies

• Uninformed search strategies: These are also called as Blind search. These
search strategies use only the information available in the problem
definition. (This includes Breadth-first search, Uniform cost search, Depth-
first search, Iterative deepening depth-first search and Bidirectional
Search)

Informed search strategies: These are also called as Heuristic search. These
search strategies use other domain specific information. (This includes Hill
climbing, Best-first, Greedy Search and A* Search)

Search strategies classification:

Difference between uninformed and informed
search:

Search Algorithm Terminologies:
 • Search

 Search problem may have three factors: search space, start
 state, goal state

• Search tree

• Actions

• Transition model

• Path cost

• solution

• Optimal solution

Properties of Search Algorithms:
 • Following are the four essential properties of search algorithms to compare the

efficiency of these algorithms:

• Completeness: A search algorithm is said to be complete if it guarantees to
return a solution if at least any solution exists for any random input.

• Optimality: If a solution found for an algorithm is guaranteed to be the best
solution (lowest path cost) among all other solutions, then such a solution for is
said to be an optimal solution.

• Time Complexity: Time complexity is a measure of time for an algorithm to
complete its task.

• Space Complexity: It is the maximum storage space required at any point during
the search, as the complexity of the problem.

Definition of search problem:

Exploring the state space:

Search Trees:

Breadth-First search (BFS):

• It is the most common search strategy for traversing a tree or graph

• This algorithms searches in breadth-wise in a tree/graph, so it is
called as breadth-first search

• BFS algorithm starts searching from the root node of the tree and
expand all nodes (successor nodes) at the current state before
moving to the next node of next level

• BFS is implemented using FIFO queue DS

Example:

• Let us see how the BFS is following the FIFO order (FIRST IN FIRST OUT):

• A -----start node (check the possibilities for node A) i.e A is first entered into
queue

 A

 BC

 CDE

 DEFG

 EFGH

 FGHI

 GHIJ

 HIJ

 IJK

 JK

 K -----GOAL NODE

• Time complexity: This is obtained by the no of nodes traverse in BFS
until the shallowest little depth

• Let d is the depth of shallowest

• Let b is the node at every state

Then T(b)=

Space complexity: It is given by memory complexity i.e., the memory
required to store each node

Then s(b)=

Completeness: BFS is complete

Optimal: Yes it is optimal

Example BFS:
• Find the route path from S to E using BFS

• Expand all possibilities from each and every node.

• After expanding with all possibilities the below one is the tree
representation with start node A and final node E.

• Based on the path cost the path should be SBE (or) SCE

• Let us see how the BFS is following the FIFO order (FIRST IN FIRST
OUT):

• S -----start node (check the possibilities for node S) i.e S is first
entered into queue

S

ABC

 BCD

 CDDE

 DDEE

 DEEE

 EEEE

 EEE

 EE

 E -----------------goal node reached

Breadth First Search

A B

F

I

E H

DC

G

FIFO Queue

-

front

Depth-First search
• DFS may be recursive or non recursive algorithm.

• It is a recursive algorithm for traversing a tree / graph

• In this it starts from the root node and follows each path of its
greatest depth node before moving to next path. That’s the reason to
call it as DFS.

• So it travels from top to bottom direction but not like BFS.

• DFS uses stack DS (LIFO) for its implementation.

• The process is similar to BFS algorithm.

• Advantages:

1. It requires less memory as it only needs to store a stack of the
nodes on the path from root node to current node.

2. It takes less time to reach to the goal node than BFS alg

Disadvantages:

1. There is a chance of re-occurring of many states and there is no
guarantee of finding the solution.

2. DFS alg goes for deep down searching and sometimes it may go to
infinite loop

Example: DFS

Backtracking

• It starts searching from the root nodes.

• So starts traversing from root node ‘S’.

• The visited nodes will be pushed into the stack by checking their successor
nodes (i.e A and H)

• Then it traverse to A (visited and successor nodes are B & C)

• Traverse from A ----- B (visited and successor nodes are D&E)

• Traverse from B ----- D (visited and no successor nodes)

• Since there are no expanded nodes so it will be popped

from the stack and starts backtracking.

Now traverse back to “B”, since it is already visited check it

successor node i.e “E” (visited and no successor nodes)

G --- pop
C
E ----- pop
D ---- pop
B
A
S

stack

• Since there are no expanded nodes so it will be popped

from the stack and starts backtracking.

• Now traverse back to “B” then to “A”, but is visited and check for
successor nodes which are not visited.

• “A” has successor node “C” (visited and successor nodes are G)

• Traverse from C --- G (visited and no successor nodes.)

• “G” is the goal node and stops searching when reaches goal node

• Since there are no expanded nodes so it will be popped

from the stack

• The DFS is not done because in stack we have some nodes,

When all the stack elements are popped out

 i.e., stack should be empty then only we can say that

DFS is terminated.

• Before popping out check the node with its successors

Whether all visited or not. If visited pop out one by one

Until the stack is empty

Output: SABDECG

C ---- pop
B ---- pop
A ---- pop
S ----- pop

stack

• Completeness: Yes, Complete with in finite state space.

• Time complexity: T(n)= 1+n2 +n3 +………..+nm

Hence T(n)=O(nm)

m----- max depth of any node

• Space complexity: O(bm)

b ------ is level of the tree

• Optimal: non-optimal (due o infinite loops)

Example 2:

• Start node is “A”

• A----------B,S (possible nodes from A)

• Traverse from A --- B

• Traverse from A --- S (C,G possible nodes from S)

• Traverse from S ---- C (D,E,F possible nodes from C)

• Traverse from C ------ D (no possible nodes, just pop it out)

• Traverse from C ------ E (H possible node from E)

• Traverse from E ------ H (G possible node from H)

• Traverse from H ----- G (F possible node from G)

• Traverse from G ----- F ()

Output : ABSCDEHGF

F
G
H
E
D ----- pop
C
S
B ---- pop
A

stack

F ---- POP
G --- pop
H ---- pop
E ----- pop
C ----- pop
S ------ pop
A ---- pop

DLS: Depth Limited search
• It is similar to DFS with a predetermined limit

• It also solves the problem of infinite path (DFS)

• Always treats the depth has no successor nodes

• DLS can be terminated in 2 conditions:

One is during standard failure value

Second one is cut-off failure value

Advantages:

Memory efficient

• Disadvantages:

• Incompleteness and not optimal

• In the given diagram consider my

limit is level -2

• If my goal is found or not found

 in the limit DLS terminates

Time complexity is: = O(bL)

L------limit

Space complexity is: O(b*L)

Of course in the above diagram we are
following the concept of DFS but not

moving beyond the search . i.e., it avoids
infinite path in DLS which is n disadvantage

of DFS

Iterative deepening depth-first search:
• Iterative deepening is the preferred uninformed search method.

When the search space is large and the depth of the solution is not
known.

• It is often used in combination with DFS, that finds the best depth-
limit. This can be done by gradually increasing the limit i.e., First ---0,
then 1 and so on…… until a goal is found.

• Iterative deepening combines the benefits of DFS and BFS.

• Description:

 It is a search strategy resulting when you combine BFS and DFS, thus

combining the advantages of each strategy, taking the completeness and

optimality of BFS and the modest memory requirements of DFS.

 IDS works by looking for the best search depth d, thus starting with depth

limit 0 and make a BFS and if the search failed it increase the depth limit

by 1 and try a BFS again with depth 1 and so on – first d = 0, then 1 then 2

and so on – until a depth d is reached where a goal is found.

Example

At depth-limit ---0

• “A” root node is visited (open node)

• Iterate the depth level, so level=1

• The possible nodes from ‘A’ are B,C,D

• In level1 “B” (current node) has adjacent node “C” and “E” but “C” is
in the same level1 ,”E” is not because it limit exceeds.

• Now the current node is “C”

• In level1 “C” (current node) has adjacent node “B” (already visited)
and “F” , “G” is not in the same level1 because it limit exceeds.

Algorithm:

procedure IDDFS(root)

for depth from 0 to ∞

found ← DLS(root, depth)

if found ≠ null

return found

procedure DLS(node, depth)

if depth = 0 and node is a goal

return node

else if depth > 0

foreach child of node

found ← DLS(child, depth−1)

if found ≠ null

return found

return null

Performance Measure:

Completeness: IDS is like BFS, is complete when the branching factor b is finite.

Optimality: IDS is also like BFS optimal when the steps are of the same cost.

Time Complexity: N(IDS) = (b)d + (d – 1)b2 + (d – 2)b3 + …. + (2)bd-1 + (1)bd =
O(bd)

If this search were to be done with BFS, the total number of generated nodes in

the worst case will be like:

N(BFS) = b + b2 + b3 + b4 + …. bd + (bd + 1 – b) = O(bd + 1)

If we consider a realistic numbers, and use b = 10 and d = 5, then number of

generated nodes in BFS and IDS will be like

N(IDS) = 50 + 400 + 3000 + 20000 + 100000 = 123450

N(BFS) = 10 + 100 + 1000 + 10000 + 100000 + 999990 = 1111100

BFS generates like 9 time nodes to those generated with IDS.

• Space Complexity:

o IDS is like DFS in its space complexity, taking O(bd) of memory.

Conclusion:

• We can conclude that IDS is a hybrid search strategy between BFS
and DFS inheriting their advantages.

• IDS is faster than BFS and DFS.

• It is said that “IDS is the preferred uniformed search method when
there is a large search space and the depth of the solution is not
known”.

Informed search strategies:
 • A Heuristic technique helps in solving problems, even though there is no guarantee that

it will never lead in the wrong direction. There are heuristics of every general

applicability as well as domain specific. The strategies are general purpose heuristics.

In order to use them in a specific domain they are coupler with some domain specific

heuristics. There are two major ways in which domain - specific, heuristic information

can be incorporated into rule-based search procedure.

• A heuristic function is a function that maps from problem state description to measures

desirability, usually represented as number weights. The value of a heuristic function at

a given node in the search process gives a good estimate of that node being on the

desired path to solution.

• Greedy Best First Search

• Greedy best-first search tries to expand the node that is closest to the
goal, on the: grounds that this is likely to lead to a solution quickly.
Thus, it evaluates nodes by using just the heuristic function:

• Taking the example of Route-finding problems in Romania, the goal is
to reach Bucharest starting from the city Arad. We need to know the
straight-line distances to Bucharest from various cities

• For example, the initial state is In (Arad), and the straight line distance
heuristic hSLD (In (Arad)) is found to be 366. Using the straight-line
distance heuristic hSLD, the goal state can be reached faster.

Evaluation Criterion of Greedy Search

Complete: NO [can get stuck in loops, e.g., Complete in finite space
with repeated-state checking]

Time Complexity: O (bm) [but a good heuristic can give dramatic
improvement]

Space Complexity: O (bm) [keeps all nodes in memory]

Optimal: NO

Greedy best-first search is not optimal, and it is incomplete. The
worst-case time and space complexity is O (bm),

where m is the maximum depth of the search space.

• HILL CLIMBING PROCEDURE:

• Hill Climbing Algorithm

• We will assume we are trying to maximize a function. That is, we are trying to

find a point in the search space that is better than all the others. And by "better"

we mean that the evaluation is higher. We might also say that the solution is of

better quality than all the others.

• The idea behind hill climbing is as follows.

1. Pick a random point in the search space.

2. Consider all the neighbors of the current state.

3. Choose the neighbor with the best quality and move to that state.

4. Repeat 2 thru 4 until all the neighboring states are of lower quality.

5. Return the current state as the solution state.

• Algorithm:

• Function HILL-CLIMBING(Problem) returns a solution

state Inputs: Problem, problem

• Local variables: Current, a node

• Next, a node

• Current = MAKE-NODE(INITIAL-STATE[Problem])

• Loop do

• Next = a highest-valued successor of Current

• If VALUE[Next] < VALUE[Current] then return Current

Current = Next

• End

• You should note that this algorithm does not maintain a search tree. It only returns a

final solution. Also, if two neighbors have the same evaluation and they are both the

best quality, then the algorithm will choose between them at random.

Problems with Hill Climbing

• The main problem with hill climbing (which is also sometimes called gradient descent)
is that we are

• Not guaranteed to find the best solution. In fact, we are not offered any guarantees about
 the solution. It could be abysmally bad.

• You can see that we will eventually reach a state that has no better neighbours but there

are better solutions elsewhere in the search space. The problem we have just described

is called a local maxima.

• Example for hill climbing

1.Local max problem

 3. Ridge

2.plateau/Flat max

MAX VALUE

Target reach

Initial point

Max value of
first hill

start

goal

Best First Search:

A combination of depth first and breadth first searches.

Depth first is good because a solution can be found without computing all nodes and breadth first is

good because it does not get trapped in dead ends.

The best first search allows us to switch between paths thus gaining the benefit of both approaches. At

each step the most promising node is chosen. If one of the nodes chosen generates nodes that are less

promising it is possible to choose another at the same level and in effect the search changes from depth to

breadth. If on analysis these are no better than this previously unexpanded node and branch is not

forgotten and the search method reverts to the

OPEN is a priority queue of nodes that have been evaluated by the heuristic function but which have not

yet been expanded into successors. The most promising nodes are at the front.

CLOSED are nodes that have already been generated and these nodes must be stored because a graph

is being used in preference to a tree.

• Algorithm:

• Start with OPEN holding the initial state

• Until a goal is found or there are no nodes left on open do.

• Pick the best node on OPEN

• Generate its successors

• For each successor Do

• If it has not been generated before ,evaluate it ,add it to OPEN and record
its parent

• If it has been generated before change the parent if this new path is better
and in that case update the cost of getting to any successor nodes.

• If a goal is found or no more nodes left in OPEN, quit, else return to 2.

• OPEN --------- nodes which are not used

• CLOSE ------- which are already evaluated

NODE H(n)
S 13
A 12
B 4
C 7
D 3
E 8
F 2
H 4
I 9
G 0

• Initial node ----s

• Open[A,B], close[s]

• Open [A], CLOSE[S,B]

• OPEN[A,E], CLOSE [S,B,F]

• OPEN[A,E,H], CLOSE[S,B,F,G]

• OUTPUT: S---B---F----G

Time complexity=space complexity o(bm)

M---- max depth of search space

Properties:
1. It is not optimal.

2. It is incomplete because it can start down an infinite path and
 never return to try other possibilities.

3. The worst-case time complexity for greedy search is O (bm),
 where m is the maximum depth of the search space.

4. Because greedy search retains all nodes in memory, its space
 complexity is the same as its time complexity

A* search algorithm
• The Best First algorithm is a simplified form of the A* algorithm.

• The A* search algorithm (pronounced "Ay-star") is a tree search
algorithm that finds a path from a given initial node to a given goal
node (or one passing a given goal test). It employs a "heuristic
estimate" which ranks each node by an estimate of the best route
that goes through that node. It visits the nodes in order of this
heuristic estimate.

• Similar to greedy best-first search but is more accurate because A*
takes into account the nodes that have already been traversed.

• A* search algorithm finds the shortest path through the search space
using the heuristic function i.e., h(n)

• It uses h(n) and cost to reach the node ‘n’ from the start state i.e.,
g(n)

• To find the value of the particular path then,

F(n)=g(n)+h(n)

• This algorithm expands less search tree and provides optimal results
faster

• It is similar to uniform cost search (gives path cost from one node to
another node i.e., uses g(n))

• A* uses search heuristic as well as the cost to reach the node. So
combine both cost as:

• F(n)=g(n)+h(n)

• F(n) is the function which is also called as fitness number

F(n)= Estimated cost of cheapest solution

g(n)=cost to reach node ‘n’ from start state

h(n)=cost to reach from node ‘n’ to goal node

 state h(n)
S 5
A 3
B 4
C 2
D 6
G 0

Algorithm:

• Initial state ‘S’

• S------A =F(n)=g(n)+h(n)

 F(n)=1+3 =4

• S-------G =F(n)=g(n)+h(n)

 F(n)=10+0 =10

• From “s” we have received F(n) =4 &10

• Compare 2 values and consider the lowest value as the current path and put highest value in hold state.

• Like wise we have to repeat till the goal state reach and stops searching

• After reaching the goal state check the hold state values are greater than the goal state value or not, if yes than consider that
lowest path cost to reach the goal

• S—A—B = F(n)=g(n)+h(n)

 F(n)= 3+4=7

• S—A—C=F(n)=g(n)+h(n)

 F(n)= 2+2=4

• S—A—C—D=F(n)=g(n)+h(n)

 F(n)=5+6=11

• S—A—C—G=F(n)=g(n)+h(n)

 F(n)=6+0=6

The cos is 6 to reach the goal

• Output: S---A---C---G

• Advantages:

Best algorithm than other

Optimal &complete

Can also solve complex problems

• Disadvantages:

Always not guaranteed to produce shortest path

It is not practical for various large-scale problems

UNIT - II
•Advanced Search: Constructing Search Trees,

Stochastic Search, A* Search Implementation,
Minimax Search, Alpha-Beta Pruning

•Basic Knowledge Representation and Reasoning:
Propositional Logic, First-Order Logic, Forward
Chaining and Backward Chaining, Introduction to
Probabilistic Reasoning, Bayes Theorem

Constructing Search Trees
The construction of search tree will

find a potential solution to unknown

questions by looking at the available

 data in an organized manner,

one piece (or "node") at a time.

• Suppose one is writing a program for an airline to find a way for a customer to get from City A to
City B given a list of all of the possible flights between any two cities. The program will need to go
through the list and determine which flight (or connecting series of flights) that the customer
should take. This is implemented using a search tree. City A (where the customer currently is
located) will be the initial piece of information, or "initial node." The search tree will consist of
this initial node at the top of the tree. Next, the program would look at all of the flights beginning
with City A. These flights would show cities that the customer could reach in just one flight, and
so these cities (each city a node itself) are on the next level, below the initial node. Now, each of
these cities has flights as well, which would be on the third level, and the tree would continue so
forth.

• Choosing a search strategy (i.e. Breadth-first or Depth-first) will tell the program how to
progress down the search tree, or hierarchy of nodes that has been built from the
information. There are clearly many different ways that one can get from City A to City B,
so the search strategy is the key to determining which path will be selected.

• Search trees, with search strategies, can also be found in finding solutions in puzzle-
solving or simple games such as "The Eight Queens Problem" where one tries to place
eight queens in locations on a chessboard such that none of them can move to the space
of another.

Therefore:

• Create search trees to solve Artificial Intelligence questions. Use each piece of
information as a node and construct a hierarchy of nodes based on how the individual
pieces of information connect together so that one can go along a path through a
series of nodes in order to get from one to another.

• Use a SEARCH STRATEGIES to determine the way of traveling down the hierarchy of the
search tree. HEURISTICS can be used to give weights or "costs" to the different paths
between nodes and help in the strategy decisions of which path to ultimately choose

Stochastic Search
• Adversarial search, or game-tree search, is a technique for analyzing

an adversarial game in order to try to determine who can win the
game and what moves the players should make in order to win.
Adversarial search is one of the oldest topics in Artificial Intelligence.
The original ideas for adversarial search were developed by Shannon
in 1950 and independently by Turing in 1951, in the context of the
game of chess—and their ideas still form the basis for the techniques
used today

Game playing:

• Good example for Stochastic search is Game playing.

• It is an interesting topic because:

one require intelligence

Logical thinking

Rational mind

Searching algorithms

• At the same time, we don’t know what the opponent choice and ideas

• It is a multi agent environment

• Game playing works on consistent values (utility factor)

• It is a space search so we use BFS and DFS

• In this depth is called ply

• How much the big is game tree the same amount of search is done

2-Person Games:

• Players: We call them Max and Min.

• Initial State: Includes board position and whose turn it is.

• Operators: These correspond to legal moves.

• Terminal Test: A test applied to a board position which
 determines whether the game is over. In chess, for example, this
 would be a checkmate or stalemate situation.

• Utility Function: A function which assigns a numeric value to a
 terminal state. For example, in chess the outcome is win (+1),
 lose (-1) or draw (0). Note that by convention, we always
 measure utility relative to Max.

• We have utility values -1,5,-2,-4,1,-1,2,4

• Now it is our turn to move

we choose best value or max value

• The next turn is opponent will

always choose which is worst for

Us (i.,e 1 st player)

• Example: Tic-Tac-Toe
max

min

• Game playing majorly works on 2 algorithms:

1 Minimax search

2 alpha Beta pruning

Minimax search

mainly works with the help of backtracking algorithm

Best move strategy is used

Max will try to maximize (best move)

Min will try to minimize (Worst move)

Minimax Search
1. Generate the whole game tree.

2. Apply the utility function to leaf nodes to get their values.

3. Use the utility of nodes at level n to derive the utility of nodes at
 level n-1.

4. Continue backing up values towards the root (one layer at a
 time).

5. Eventually the backed up values reach the top of the tree, at
 which point Max chooses the move that yields the highest value.
 This is called the minimax decision because it maximises the
 utility for Max on the assumption that Min will play perfectly to
 minimise it.

Basic Example 1

Example 2:
• Let us assume Max=- inf and Min=inf

Max move
(inf,3) --- 3

(3,2) ---- 2

(2,-1) ----- -1

(inf,1) --- 1

(1,0)---- 0

(0,2) ----- 0

(inf,5) ----- 5

(5,4) ----- 4

(4,1) ----- 1

(inf,7) ----min 7

(7,5) ----- min 5

(5,6) ----- 5

Min move

(-inf,-1) --- -1

(-1,0) ---- 0

(-inf,1) ---- 1

(1,5)----- 5

Max Move

(Inf,0) ----- 0

(0,5) ------ 0

Example:3

 Example :Tic-Tac-Toe (minimax)

• Properties of minimax:

• Complete : Yes (if tree is finite)

• Optimal : Yes (against an optimal opponent)

• Time complexity : O(bm)

• Space complexity : O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games

• exact solution completely infeasible.

Limitations

• – Not always feasible to traverse entire tree

• – Time limitations

Modified Heuristic MiniMax function

Alpha-Beta pruning
• In minimax algorithm we explore all nodes in the given search tree,

exploration is more

• So now we can develop a algorithm where we can reduce the
expansion of nodes that is alpha beta pruning

• In this pruning means we are going to ignore the next branches.

• It is a method of cut off search by exploring less no of nodes.

• In simple words alpha beta pruning is defined as cutting the parts of
the tree which we don’t need.

• Basically 2 values

• and

• Alpha= max value, in worst case alpha =-inf

• Beta=min value, in worst case beta=inf

• At max level always the value of alpha will be changed and beta
value remains constant

• At min level always the value of beta will be changed and alpha
value remains constant

• Never take any value to the upside of the tree i.e.,

• Always need to check the condition at each node whether

• Alpha Beta

• If it is greater then we can prone the next path to travel so that we
can reduce the expansion of nodes and should know the alpha cut-off
and beta cut-off

Example for alpha beta pruning

• After terminal nodes or leaf nodes we have max level

• At max:

Initial value of alpha =inf (changes) and beta= -inf (remains constant)

Max(-inf,2)=2

Max(2,3) =3

At node E the value is 3 (greater than equal to 3)

• At min:

Next upper node is B (less than equal to 3)

But if you want to evaluate next part than initially alpha = -inf and

beta =inf

But now, alpha=-inf

Beta= 3(changes at min)

At node B the value is 3 (less than equal to 3)

• At max:

To max node ‘F’ we can take the values of ‘B’ node

Now alpha= -inf

Beta=3

Max(-inf,5)=5

Now alpha=5 which is going to change at ‘F’ node (great than equal 5)
and beta =3 (remains constant at max level)

Now check the condition,

yes

Since condition is true prone the next path

• Now again check at B min(3,5) =3 (less than equal)

• At ‘ A’ –max

Alpha=-inf (>=3)

Beta=inf

At ‘c’ – min

Alpha=3

Beta=inf

At ‘G’ ---max

Alpha =3

Beta=inf

But ‘G’ has only one possible , so no need to compare (G=0)

• At ‘C’ ---- min

Alpha=3

Beta=0

 ----- True ---- prone

• At ‘I’ node --- max

Initially alpha=3 and beta=inf

Now at ‘I’ alpha =3 and beta=inf

Now I=3

At ‘D’ node ----- min D=3

Initially alpha=3 and beta=inf

Now at ‘D’ node alpha=3 and beta=2

 ----- True ---- prone

• Best case of alpha-beta is O(b power of d/2)

• D----depth of the node (ply)

• O(b d/2) is higher than O(b d)

Basic Knowledge Representation and
Reasoning:
• Intelligence----- Machine requires intelligence to perform a task i.e.,

ability to use knowledge.

• The important factor of intelligence is Knowledge

• How to represent knowledge

• How to give Knowledge to machine

• How to store on to machine

• Reasoning --------- It is defined in different ways like Processing of
knowledge, capability of thinking, to analyze, to have valid conclusion.

• Syntax : Grammatical of a language
• Semantics : meaning or sentence of a language
If there is no proper or good representation than that yields to the above
two forms i.e., syntax and semantics

Inference mechanism reads the environment and interprets the knowledge
that is represented in suitable language and act accordingly.

In simple words it requires a
language and
Method to use language

• So There must be a method or technique to represent the knowledge that

is called logic (propositional logic and first-order predicate logic)
• It is one of the Knowledge representation

• Propositional logic is one of the simplest method of Knowledge
representation.

• The term proposition simply defined like writing a sentence in terms
of English language, programming or mathematical language.

• It is a language with some concrete rules which deals with
propositions and has no ambiguity in representation.

• It consist of precisely ,

• The atomic and complex are the 2

 representations of syntax and

semantics

• This representation will support the inference and can be translated
into logics using syntax and semantics.

• Syntax: well defined sentence in the language and should have the
proper structure

• Semantics: Defines the truth of meaning of sentence

• Propositional logic is the declarative statement either in terms of
TRUE/FALSE

• Connectives

Word Symbol Example

Not A

And ^ A^B

OR AVB

Implies A B

If and only if A B

P Q P Q

T T T

T F F

F T F

F F T

P P

T F

F T

If the roads are wet than it rains ????? -------- meaning less

there might be some other reasons to have the road wet.

I go to mall if I have to do shopping

Example 1

• A ----- It is hot

• B ------ It is humidity

• C ------ It is raining

Condition for propositional logic: write the propositional statements

If it is humid then it is hot ------ B A

If it is hot and humid then it is not raining --------- (A^B) ~ C

Example 2:

P----You can access the internet from campus

Q---- you are CSE students

R---- you are freshman

You can access the internet from campus only if you are CSE students
or you are not a freshman ------ P (Q v ~R)

First-Order Logic
• it is the another way of representing the knowledge in AI, considered

to be an extension of PL (proposition logic)

• FOL is also known as predicate logic

• FOL is defined as a powerful language that develops information
about the object more easy way and also can express the relationship
between their objects and also infer arguments in infinite models like

• Simply says it assumes objects, relations and functions

• FOL is also a natural language which has two parts : syntax and
semantics

• The basic syntax elements of: constants (terms), variables (terms),
predicates, Functions (terms), Connectives, equality, Quantifiers

• terms

• Tommy is a term

• Men is a term

• Predicates:

• These are the sentences which are joined from a predicate symbol
followed be parenthesis () with sequence of terms.

• The representation is

Predicate(term1,term2,………………..term n)

• Example:

• Hari and Raghu are brothers ------> brother(Hari, Raghu)

• Tommy is a dog --->dog(Tommy)

• Quantifiers:

• It is a language element which generates quantification.

• These are the symbols that permits to determine or identify the range
and scope of the variable in the logic expression.

• Universal quantifier is a symbol of logical representation which
specify the statement with in a range is true for everything.

• In universal quantifiers we use implification as a symbol ()

Example: If x is a variable then x is read as different ways with in a
range

• Existential quantifier will express the statement with in its scope is
true for at least one instance of sometimes.

• In Existential quantifier we use “V” , “ “

Example: If x is a variable then (x) is read as different ways with in
some scope of existence.

Example:

• John likes all kind of food

• Apple and vegetables are food

• Anything anyone eats and not killed his food

• Anil eats peanut and still alive

• Harry eats everything that anil eats

• John like peanuts

Convert all the above statements into predicate logic (or) FOL?

Inference in FOL:
• This is used to deduce new facts or sentences from existing sentences

• By understanding FOL inference rules let us understand some basic
terminology used:

Substitution:

It is a fundamental operation performed on terms and formulae's

Equality:

It not only uses predicate ,terms for creating or making atomic
sentences but also uses equality

Example:

Brother(john)=smith

~(x=y) equivalent to x!=y

Inference rules for quantifiers
• Universal Generalization

• Universal Instantiation

• Existential Instantiation

• Existential Introduction

• Universal Generalization:

It is a valid inference rule which states that if premises p(c) is true for
any arbitrary element ‘C’ in the universe of discourse, then (x) p(x)
can be represented as,

 P(c)

 (x) p(x)

• Universal Instantiation:

It is also called as universal elimination, can be applied multiple times
to add new sentence.

 (x) p(x)

 P(c)

• Existential Instantiation:

It is also called as existential elimination which can be applied only
once to replace the existential sentence.

 x p(x)

 p(c)

• Existential Introduction:

It states that if there is some element ‘c’ in the universe of discourse,
which has a property ‘p’

P(c)

 x p(x)

Resolution in FOL:
• It is defined as a theorem proven technique which proves by

contradiction.

• It is used when there are various statements, then read to prove
conclusion of those statements.

• Unification is the key concept which proves the conclusion of those
statements.

• Resolution is a single inference rule which can be efficiently operated
on Horn clause and definite clause (conjunction normal form and
clausal form)

Clause: Disjunction of literals

Conjunctive Normal Form: A sentence represented as a conjunction of
clauses said to be CNF

Steps for resolution:
• Conversion of Sentence into FOL

• Convert FOL statement into CNF

• Negate the statement which needs to prove (by contradiction)

• Draw resolution graph (unification).

Example:

John likes all kind of food

Apple and vegetables are food

Anything anyone eats and not killed his food

Anil eats peanut and still alive

Harry eats everything that anil eats

Prove by resolution that --- John like peanuts

Step 1: Convert the given into FOL

• Here I am adding some predicates to show equality

• Step 2: Conversion of FOL into CNF

(i) Eliminate all implications and rewrite

(ii) Move negation inside and rewrite

• (iii) Rename or standardize variable

• (iv) Eliminate any Existential instantiation quantifiers in the
statements:

No problem because in any of statement there is no existential
quantifier

• (v) Drop universal quantifiers

Step3: Negate the statement to be proved

In this we consider or apply negation to the conclusion statement i.e.,
it is represented as

~ likes(john, peanuts)

Step4: Draw resolution graphs (unification)

In this we will solve problem by resolution tree using substitution, so
the resolution graph is given as

Forward chaining and Backward chaining
• In artificial intelligence, forward and backward chaining is one of the

important topics, but before understanding forward and backward
chaining lets first understand that from where these two terms came.

Inference engine:
• The inference engine is the component of the intelligent system in

artificial intelligence, which applies logical rules to the knowledge
base to infer new information from known facts. The first inference
engine was part of the expert system. Inference engine commonly
proceeds in two modes, which are:

1.Forward chaining
2.Backward chaining
• Horn Clause and Definite clause:

• Forward chaining is also known as a forward deduction or forward
reasoning method when using an inference engine. Forward chaining
is a form of reasoning which start with atomic sentences in the
knowledge base and applies inference rules (Modus Ponens) in the
forward direction to extract more data until a goal is reached.

• The Forward-chaining algorithm starts from known facts, triggers all
rules whose premises are satisfied, and add their conclusion to the
known facts. This process repeats until the problem is solved.

Forward chaining mechanism

Properties of Forward-Chaining:

• It is a down-up approach, as it moves from bottom to top.

• It is a process of making a conclusion based on known facts or data,
by starting from the initial state and reaches the goal state.

• Forward-chaining approach is also called as data-driven as we reach
to the goal using available data.

• Forward -chaining approach is commonly used in the expert system,
such as CLIPS, business, and production rule systems.

• Consider the following example:

Rule1:If A and C then F

Rule2: If A and E then G

Rule3: IF b then E

Rule4:If G then D

Problem :Prove IF A and B are true then D is true (IF A and B then D)

In Data base we have A and B

In Knowledge base :

• A &C F

• A&E G

• B E

• G D

Finally reached from initial states A & B to goal state D

Example 2
• Goal state : Z

• Facts/Data base :A,B,E,C

• Rules:

Rule1:F &B Z

Rule2: C & D F

Rule 3: A D

Finally reached conclusion state ‘Z’

• Backward-chaining is also known as a backward deduction or
backward reasoning method when using an inference engine. A
backward chaining algorithm is a form of reasoning, which starts with
the goal and works backward, chaining through rules to find known
facts that support the goal.

• In other words

Backward chaining mechanism

Properties of backward chaining:

• It is known as a top-down approach.

• Backward-chaining is based on modus ponens inference rule.

• In backward chaining, the goal is broken into sub-goal or sub-goals to
prove the facts true.

• It is called a goal-driven approach, as a list of goals decides which
rules are selected and used.

• Backward -chaining algorithm is used in game theory, automated
theorem proving tools, inference engines, proof assistants, and
various AI applications.

• The backward-chaining method mostly used a depth-first search
strategy for proof.

Example:
• Goal state: Z

• Facts: A,E,B,C

• Rules:

Rule1:F&B Z

Rule2:C&D F

Rule3:A D

Facts/data base

Knowledge base

• Finally reached “Z” and added into the facts/data base

Introduction to probabilistic reasoning
• Reasoning:

Atomic events
• This is useful in understanding the foundations of probability theory.

Posterior probability: Which is calculated after all information or informed in prior is taken into he
account. Posterior probability is the combination of prior probability and new information

• Example: rolling a dice (6)
• Sample space(sigma)= {1,2,3,4,5,6}
• Events: even {2,4,6} and odd {1,3,5}
P(6)=1/6
P(even) =3/6 = 1/2
P(odd) =3/6 = 1/2
Conditional probability : What is the probability of getting 6 when it is an
even no?
P(a/b)=p(a b)/p(b) = 1/6

 ½
Sol:1/3

Bayes' theorem
• Bayes' theorem is also known as Bayes' rule, Bayes' law,

or Bayesian reasoning, which determines the probability of an event
with uncertain knowledge. In probability theory, it relates the
conditional probability and marginal probabilities of two random
events.

• Bayes Theorem An important branch of applied statistics called Bayes
Analysis can be developed out of conditional probability. It is possible
given the outcome of the second event in a sequence of two events
to determine the probability of various possibilities for the first event.

Bayes Theorem

• From conditional prob:

P(A|B)=p(A^B)/p(B) ---- P(A|B).p(B)=p(A^B) ------eq1

P(B|A)=p(B^A)/p(A) ---- P(B|A).p(A)=p(B^A) ------eq2

eq1=eq2

• P(A|B).p(B)=P(B|A).p(A) from this get P(A|B) & P(B|A)

P(A|B)=P(B|A).p(A)/p(B)

P(B|A)=P(A|B).p(B)/p(A) Bayes' rule

• Calculate Hypothesis for flu based on symptoms: GIVEN

P(A): symptom of flu----0.00001

P(B|A):prob of symptoms gives flu ----0.95

P(B): your symptoms of flu=0.01

• P(A|B)= p(B|A)*p(A)/p(B)

0.95*0.0001/0.01=0.00095 (<1 in thousand people)

Example for conditional probability given:

P(C) ---70%----children like chocolates (0.7)
p(C and S)----35%---children likes both chocolates and strawberry
(0.35)

• Calculate conditional prob who likes chocolates also likes strawberry

P(S|C)= p(C^S)/p(C)

0.35/0.7=0.5 (50% --- who likes chocolates also likes strawberry)

• Example – How to buy a used car

• I am thinking of buying a used car at Honest Ed’s. In order to make an
informed decision, I look up the records in an auto magazine of the car
type I am interested in and find that unfortunately 30% have faulty
transmissions.

• To get more information on this particular car at Honest Ed’s I hire a
mechanic who can make a shrewd guess on the basis of a quick drive
around the block. Of course, he isn’t always right but he does have an
excellent record. Of all the faulty cars he has examined in the past, he
correctly pronounced 90% “faulty”. In other words, he wrongly pronounced
only 10% “ok”.

• He has almost as good a record in judging good cars. He has correctly
pronounced 80%”ok”, while he wrongly pronounced only 20% “faulty”.

• “faulty” describes the mechanics opinion.

• faulty with no quotation marks describes the actual state of the car.

• Example – How to buy a used car

• What is the chance that the car I’m thinking of buying has a faulty
transmission:

1. Before I hire the mechanic?

2. If the mechanic pronounces it “faulty”?

 3. If the mechanic pronounces it “ok”?

Assignment:

UNIT - III
Advanced Knowledge Representation and Reasoning:

Knowledge Representation Issues, Nonmonotonic

Reasoning, Other Knowledge Representation Schemes

Reasoning Under Uncertainty: Basic probability, Acting

Under Uncertainty, Bayes’ Rule, Representing

Knowledge in an Uncertain Domain, Bayesian Networks

• Introduction:

Human beings are good at understanding, reasoning, and interpreting
knowledge and using this knowledge, they could be able to perform
various actions in the real world.

But,

How do machines perform the same?

How it helps machine in reasoning and interpretation?

KNOWLEDGE REPRESENTATION AND REASONING
Knowledge representation in AI describes the representation of any
knowledge.

Knowledge representation also known as KR/KRR represents
information from the real world from a computer to understand and
then utilize this knowledge to solve complex real life problems like
communication with human beings in natural language.

Different Kinds of Knowledge Need to Represent the Following
Things:

Objects, events, performance, facts, metaknowledge, and
knowledgebase.

Different types of knowledge:

• Declarative knowledge: This includes concepts, facts, and objects.

• Structural knowledge: It defines basic problem solving knowledge
that describes the relationship between the concepts and objects.

• Procedural knowledge: It is responsible for knowing how to define
something and includes rules, strategies, and procedures.

• Meta knowledge: Defines the knowledge about other types of
knowledge or data.

• Heuristic knowledge: This represents some experts knowledge in the
field or subject.

Cycle of Knowledge representation
Artificial Intelligent system usually consist of various concepts to display
intelligent behaviour.

 Perception ---

This diagram shows interaction of AI with real world and

components involved in showing intelligent.

Learning

Knowledge
Representation Reasoning

Planning

Execution

• PERCEPTION: It retrieves the data or information from the environment
and finds the source of noises and also checks if the AI was damaged by
anything and also sends to respond when any sense has been detected.

• LEARNING: Learns from the captured data by perception, focuses on self
improvement to learn new things, requires knowledge acquisition, past
searches, and inferences.

• KNOWLEDGE REPRESENTATION: Human likes intelligent in machine.
Simply, it represents all about understanding intelligent.

• REASONING: Instead of understanding knowledge or building from
bottom-up, the main goal is to understand intelligent behaviour from top-
down and focuses on what an intelligent system need to know in order to
behave intelligently.

• PLANNING & EXECUTION: This depend on the analysis of knowledge
representation and reasoning. (Planning includes initial state and finding
the every conditions and facts)

Relationship Between Knowledge and Intelligence
• Knowledge plays a vital role in the real world.

• But assume what happens if we remove knowledge part. (It could not be able to display
any intelligent behaviour)

Sensing Knowledge

Action

Decision
maker

Whose actions are justified by sensing the
environment and using knowledge

Techniques (other knowledge representation schemes)

• 4 techniques:

1.Logic representation

2.Semantic network programming
• IS-A relation (inheritance)

• Kind of relation

3.Frame representation

4.Production rules

Requirements of Knowledge Representation:

1. Representation Accuracy: It is defined as that it should represent all
kind of required knowledge.

2. Inferential Adequacy: It is described as that it should be able to
manipulate the representation structure to produce new
knowledge corresponding to the existing structure.

3. Inferential Efficiency: It is the ability to direct the inferential
knowledge mechanism into the most productive system.

4. Acquisitional Efficiency: It is the ability to acquire new knowledge
easily using automatic methods.

Knowledge Representation Issues
• The main goal is to facilitate the knowledge.

• The following are the some of the issues where represents the
knowledge.

1. Important attributes.

2. Relationship among attributes.

3. Choosing granularity.

4. Set of objects.

5. Finding the structure.

Important Attributes:

• In this any attributes of object that may occur in every problem
domain?

• There might be a chance of occurring 2 attributes namely

1. Instance.

2. Is-of

The above 2 attributes are important to represent the knowledge
because they help in inheritance.

Relationship Among Attributes:

This type of attributes may suspect that is there any important relation
between different attributes of objects?

There are four properties define to have relation between different attribute
of objects:

1. Inverse

2. Existence in an hierarchy

This defines in terms of generalization and specialization.

3. Reasoning for a value.

4. Single value attribute.

Choosing Granularity:

In this we define up to what level the knowledge can be represented
and what are the primitives?

Set of Objects

In this we define how set of objects can be represented?

Using universal quantifiers objects can be represented.

Finding the Structure:

It is defined how to search for relevant data structure or according to
particular situation, fetch or get the knowledge.

Example:

In the knowledge base if one of the data that does not exist, then how
we are going to find the structure to add the data or to get the data.

So, generally in order to find the structure of any data it includes:

1. How to perform an initial selection.

2. How to fill the appropriate details in current situation.

3. How to find better structure.

4. When to create and remember new structure.

If the data
doesn’t exist in
the knowledge

Inductive reasoning

6. Non-Monotic Reasoning:

Other Knowledge Representation Schemes
• Logic representation (prepositional and predicate)

LR is a language with some definite rules which deal with proposition and
has no ambiguity in representation. It represents a conclusion based on
various conditions and place down some important common rules and also it
consists of precisely defined syntax and semantics which supports the sound
inference.

Each sentence can be translated into sentence using syntax and semantics.

• Semantic Network

When do you say a particular sentence or statement is meaningful?

• A sentence is meaningful when we can really understand it and map it
to some of the known concepts of the real world in which we live or
see or can visualize or realize.

• Knowledge can be represented as a network of different concepts.

• If we consider semantic net as a knowledge representation method or
scheme then it must also have some particular inference mechanism
by which it can utilize this representation to infer new things to
answer different questions.

Nodes and Arcs

Components of semantic network

• In simple words semantic network representation works as an alternate for
predicate logic for known representations.

• In this we can represent the knowledge in the form of graphical networks.

• Consists of 2 types of relations:

IS-A relation (inheritance)

Other kind of relation (Non binary relation)

• Frame Representation

Example:

Example for Frame of car

• Instance frame: Instance frame inherits information from class frame.
We can give unique properties for instance.

• Inherits the behavior: one instance also inherits action

• Production rules:

A production system is based on a set of rules about behavior. These
rules are a basic representation found helpful in expert systems,
automated planning, and action selection. It also provides some form
of artificial intelligence.

What is Production System?

Production system or production rule system is a computer program
typically used to provide some form of artificial intelligence, which
consists primarily of a set of rules about behavior but it also includes
the mechanism necessary to follow those rules as the system responds
to states of the world.

Components of Production System

• The major components of Production System in Artificial Intelligence are:

• Global Database: The global database is the central data structure used by
the production system in Artificial Intelligence.

• Set of Production Rules: The production rules operate on the global
database. Each rule usually has a precondition that is either satisfied or not
by the global database. If the precondition is satisfied, the rule is usually be
applied. The application of the rule changes the database.

• A Control System: The control system then chooses which applicable rule
should be applied and ceases computation when a termination condition
on the database is satisfied. If multiple rules are to fire at the same time,
the control system resolves the conflicts.

Features of Production System

The main features of the production system include:

1. Simplicity: The structure of each sentence in a production system is unique and
uniform as they use the “IF-THEN” structure. This structure provides simplicity in
knowledge representation. This feature of the production system improves the
readability of production rules.

2. Modularity: This means the production rule code the knowledge available in
discrete pieces. Information can be treated as a collection of independent facts
which may be added or deleted from the system with essentially no deleterious
side effects.

3. Modifiability: This means the facility for modifying rules. It allows the
development of production rules in a skeletal form first and then it is accurate to
suit a specific application.

4. Knowledge-intensive: The knowledge base of the production system stores pure
knowledge. This part does not contain any type of control or programming
information. Each production rule is normally written as an English sentence; the
problem of semantics is solved by the very structure of the representation.

Control/Search Strategies

• How would you decide which rule to apply while searching for a solution for any
problem? There are certain requirements for a good control strategy that you need
to keep in mind, such as:

• The first requirement for a good control strategy is that it should cause motion.

• The second requirement for a good control strategy is that it should be systematic.

• Finally, it must be efficient in order to find a good answer.

Production System Rules

Production System rules can be classified as:

• Deductive Inference Rules

• Abductive Inference Rules

• You can represent the knowledge in a production system as a set of rules along with
a control system and database. It can be written as:

• If(Condition) Then (Condition)

• The production rules are also known as condition-action, antecedent-consequent,
pattern-action, situation-response, feedback-result pairs.

Classes of Production System

There are four major classes of Production System in Artificial
Intelligence:

• Monotonic Production System

• Partially Commutative Production System

• Non-Monotonic Production Systems

• Commutative Systems

Reasoning under uncertainty

Handling uncertain knowledge

Uncertainty and rational decisions

Basic probability notation

Probability model

Prior probability

Random variables

Probability Distribution

Conditional probability

Axioms of probability

Joint probability distribution

Bayes' Rule

Applying Bayes' rule: Example

What is the probability of the disease that he has a stiff neck?

Using Bayes’ rule: combining evidence

Representing Knowledge in an uncertain
domain
• There are various ways of representing uncertainty. Here we consider

three different approaches, representing three different areas of
uncertainty:

1. Probability theory

2. Fuzzy logic

3. Truth maintenance System

Probability theory:

• Probabilistic assertions and queries are not usually about particular possible worlds,
but about sets of them.

• In probability theory, the set of all possible worlds is called the sample space. The
Greek letter Ω (uppercase omega) is used to refer to the sample space, and ω
(lowercase omega) refers to elements of the space, that is, particular possible
worlds.

• A fully specified probability model associates a numerical probability P (ω) with each
possible world.1 the basic axioms of probability theory say that every possible world
has a probability between 0 and 1 and that the total probability of the set of possible
worlds is 1:

• 0 ≤P(ω) ≤1 for every ω and _ω∈Ω

• P(ω) = 1

i. If a coin is flipped there is an equal chance of it landing on head side or tail side,
consider H1 is for heads and H2 for tails. This scenario is expressed as P(H1)=0.5 and
P(H2)=0.5.

ii. The probability of 1st and 2nd toss both landing on heads is 0.5*0.5=0.25.

iii. We can write this as P(H1^H2)-0.25 and in general two independent events P and
Q, P(P^Q)=P(P)*P(Q).

Fuzzy logic:

• In the existing expert systems, uncertainty is dealt with through a
combination of predicate logic and probability-based methods.

• An alternative approach to the management of uncertainty is based
on the use of fuzzy logic, which is the logic underlying approximate or,
equivalently, fuzzy reasoning.

• e.g., most, many, few, not very many, almost all, infrequently, about
0.8, etc.

• In this way, fuzzy logic subsumes both predicate logic and probability
theory, and makes it possible to deal with different types of
uncertainty within a single conceptual framework.

The term fuzzy refers to things which are not clear or are vague. In the real

world many times we encounter a situation when we can’t determine

whether the state is true or false, their fuzzy logic provides a very valuable

flexibility for reasoning. In this way, we can consider the inaccuracies and

uncertainties of any situation.

In boolean system truth value, 1.0 represents absolute truth value and 0.0

represents absolute false value. But in the fuzzy system, there is no logic for

absolute truth and absolute false value. But in fuzzy logic, there is
intermediate value too present which is partially true and partially false.

ARCHITECTURE

Its Architecture contains four parts :

• RULE BASE: It contains the set of rules and the IF-THEN conditions provided by
the experts to govern the decision making system, on the basis of linguistic
information. Recent developments in fuzzy theory offer several effective methods
for the design and tuning of fuzzy controllers. Most of these developments reduce
the number of fuzzy rules.

• FUZZIFICATION: It is used to convert inputs i.e. crisp numbers into fuzzy sets.
Crisp inputs are basically the exact inputs measured by sensors and passed into
the control system for processing, such as temperature, pressure, rpm’s, etc.

• INFERENCE ENGINE: It determines the matching degree of the current fuzzy
input with respect to each rule and decides which rules are to be fired according
to the input field. Next, the fired rules are combined to form the control actions.

• DEFUZZIFICATION: It is used to convert the fuzzy sets obtained by inference
engine into a crisp value. There are several defuzzification methods available and
the best suited one is used with a specific expert system to reduce the error.

Truth maintenance System:

• To choose their actions, reasoning programs must be able to make
assumptions and subsequently revise their beliefs when discoveries
contradict these assumptions.

• The Truth Maintenance System (TMS) is a problem solver subsystem for
performing these functions by recording and maintaining the reasons for
program beliefs. Such recorded reasons are useful in constructing
explanations of program actions and in guiding the course of action of a
problem solver

• TMS are another form of knowledge representation which is best
visualized in terms of graphs.

• It stores the latest truth value of any predicate. The system is developed
with the idea that truthfulness of a predicate can change with time, as
new knowledge is added or exiting knowledge is updated.

• It keeps a record showing which items of knowledge is currently
believed or disbelieved.

Bayesian Networks:

• Representing knowledge in an uncertain domain:

1) Joint probability distribution

2)Bayes' rules allows unknown probabilities to be computed from
known

What is Bayesian network (belief network)?

A Bayesian network falls under the category of probabilistic graphical
modelling (PGM) technique that is used to compute uncertainties by
using the concept of probabilities

• They are used to module uncertainties by using DAG

What is DAG (Directed Acyclic Graph)

A DAG is used to represent Belief/Bayesian/casual networks and like
any other statistical graphs.

It contains nodes and links which shows relation between nodes.

Bayesian network applications

Nodes and values

Preliminary choices: Nodes and values

Bayesian network structure

Lung cancer diagnosis:

CPT: (conditional probability table)

The Markov Property

Conditional independence

UNIT-IV

Learning:

What Is Learning? Rote Learning, Learning by
Taking Advice, Learning in Problem Solving,
Learning from Examples -- Winston’s Learning
Program, Decision Trees.

What is Machine Learning?

• Machine learning is an application of artificial intelligence (AI) that
provides systems the ability to automatically learn and improve from
experience without being explicitly programmed.

• Machine learning focuses on the development of computer programs
that can access data and use it learn for themselves. The process of
learning begins with observations or data, such as examples, direct
experience, or instruction, in order to look for patterns in data and make
better decisions in the future based on the examples that we provide.

• The primary aim is to allow the computers learn automatically without
human intervention or assistance and adjust actions accordingly.

Why do machines need learning:

• To understand and improve efficiency of machine learning

• Discover new things or structures that or unknown to human

• Fill in skeletal/incomplete about a domain

Advantages:

Skill refinements

Knowledge acquisition

Different methods of learning

The following are the different methods of learning:

• Rote Learning

• Learning by Taking Advice

• Learning in Problem Solving

• Learning from Examples

 ----(Winston’s program and decision trees)

Other:

• Learning with micro operators

• Explanation based learning

• Formal based learning

Rote Learning

Rote Learning is basically memorization.

• Saving knowledge so it can be used again.

• Retrieval is the only problem.

• No repeated computation, inference or query is necessary.

A simple example of rote learning is caching

• Store computed values (or large piece of data)

• Recall this information when required by computation.

• Significant time savings can be achieved.

• Many AI programs (as well as more general ones) have used caching very
effectively

Example:

5!=5*4*3*2*1 =120

But next time if you give, 6!

It will compute 5!*6 (but not 6*5*4*3*2*1)

• It avoids understanding the inner complexity but focuses on
memorizing the materials. So that it can be recalled exactly the way it
was read

• Learning by something i.e., repeating----In this “over and over again”
method is used.

 Ex: how we learn or memorize the lyrics of songs

• Rote learning is basically memorization:

1. Saving knowledge, so it can be used again

2. Retrieval is the only problem

3. No repeated computation, inference or query necessary

 Ex: cache memory/caching

Learning by taking advice

• A computer can do very little work without program

• In the form of programming we give instructions to the computer or
system

• When programming, we write series of programs, a rudimental kind of
learning takes place

• After being programmed the computer can do something which it could
not do it before

• Interpreter or compiler is needed to intervene to change the teacher’s
instructions into code that machine can execute directly

• In simple words

 Request----interpret---operative-----integrate-------evaluate.

Learning in Problem Solving

• No teacher advices but learning can be happened through experience

 Ex: To find gcd of 2 numbers

• It does not involve in increase of knowledge but focus on just method of
using knowledge

• Learning by parameter adjustment

 Ex: Samsung checker

 If the above example includes the computation then assume

 C1t1+c2t2+c3t3+……………………cntn

 where, c ----------- weights

 t------------ features

• Every pattern or feature is generally combined with weights, but the
problem is how to join weights and features?

• Many problems rely on evaluation procedure that combines
information from several sources into a single summary statistics.

• Pattern classification often combines with weights

• It is difficult to know how much weight has to be attached to each
feature

• One way to find is through experience

• Other method is we use the outcome to adjust the weights for factor
in an evaluation time. (because feature weights may get changed)

Learning from Examples

• This involves the process of learning by example -- where a system tries
to induce a general rule from a set of observed instances.

• This involves classification -- assigning, to a particular input, the name
of a class to which it belongs. Classification is important to many
problem solving tasks.

• A learning system has to be capable of evolving its own class
descriptions:

• Initial class definitions may not be adequate.

• The world may not be well understood or rapidly changing.

• The task of constructing class definitions is called induction (learning by
induction) or concept learning

• The techniques used for constructing class definitions (or concept
learning) are:

• Winston’s learning program

• Version spaces

• Decision trees

• In this we classify the situation

 Ex: classifying numbers 0----9, 11-----99,100-----999 (number of
 digits)

• It is the simplest form (straight forward recognition task)

• Before classification can be done, the classes which it will be using must
be defined.

• Isolate set of features relevant to the task domain. There are many
methods to isolate.

Method 1: Define each class and each class has a scaling function.

Example: C1t1+c2t2+c3t3+……………………cntn

Task: Weather prediction, where

t1---- rainfall

t2---- humidity

t3 ---- cloudy

t4 ---- temperature and so on……..

Method 2: Define each class as a structure compared to those features.

Task: Identify part of animal

Each part of the animal can be stored as a structure with various features
representing such as color, length, feathers and so on……..

Winston’s Learning Program

Fig: Structural Descriptions

 Fig: The comparison of two arches Fig: The Arch description after two examples

Fig: The Arch description after a near Miss

Decision Trees.

• Dichotomiser: Defined in terms of dividing into two which are
completely opposite.

• Finally in simple words:

Calculate the entry of every attribute using the data set “S” i.e.,

Entropy(S)

Put the set “S” into subset using the attribute for which the resulting
entropy (after splitting) is minimum or (or equivalently gain is max) i.e.,

Gain (S,A) = Entropy(x) [p(S/A) . Entropy (S/A)]

Where, A ---- Attribute

 S/A ---- S is given by A

• Make a decision tree node containing that attribute

• Recurse on subsets using remaining attributes.

Example:

To go for outing/Not based on weather forecasting?

Attributes:

Outlook

Temperature

Humidity

Wind

Play/class/Decision

Step 1: Calculate Entropy for Decision:

• Play or decision column consist of 14 instances and includes two
labels “yes” and “no”

• Decision labelled “yes”=9

• Decision labelled “no”=5

Entropy (S/Decision) =

 = 0.940

Step 5: Calculate wind factor on decision:

Gain(S,W (wind))=Entropy(S) [p(S/W) * Entropy(S/W)]

But, Wind has 2 factors “weak” and “strong”

 = Entropy(S)-[p(S/w=weak)*Entropy(S/w=weak)]-
 [p(S/s=strong)*Entropy(S/ s=strong)]

• Weak wind factor on Decision:

Entropy (D/w=weak)=

Entropy (D/s=strong)=

Substitute in Gain(S,W (wind))= 0.940-[(8/14)*0.811]-[(6/14)*1]

 = 0.048

Humidity is having 2 factors, High and normal
D1,D2,D8=No
D9,D11=yes
Hence if the outlook is sunny , outing can happen on D9 and D11

Step 9: Cloudy outlook on decision
Decision will always be “yes” if outlook were “cloudy”

• D3, D7 ,D12,D13=yes
Hence if the outlook is sunny , outing can happen on D3, D7 ,D12 and
D13

• Step 10: Rainy outlook on decision

Gain (Rainy, Temperature)

Gain (Rainy, Humidity)

Gain (Rainy, wind) ---------- correct decision

• Wind Produces the highest score if outlook were rainy, because if
you compare the other 2 attributes with play/decision there are
conflicts.

• Wind is having 2 factors, Strong and weak
D6,D14=No
D4, D5, D10=yes
Hence if the outlook is rainy , outing can happen on D4, D5 and D10

• Note: This process gets completed only if all days data are classified
perfectly or run out of attributes.

• Thus the classification tree built using ID3 algorithm is shown below.
It tells if weather was amenable to play?

UNIT - V

Expert Systems:

Representing and Using Domain Knowledge,
Shell, Explanation, Knowledge Acquisition.

What is Expert System?

• Expert System is an interactive and reliable computer-based decision-

making system which uses both facts and heuristics to solve complex
decision-making problems. It is considered at the highest level of human
intelligence and expertise. The purpose of an expert system is to solve the
most complex issues in a specific domain.

• The Expert System in AI can resolve many issues which generally would
require a human expert. It is based on knowledge acquired from an expert.
Artificial Intelligence and Expert Systems are capable of expressing and
reasoning about some domain of knowledge. Expert systems were the
predecessor of the current day artificial intelligence, deep learning and
machine learning systems.

What are Expert Systems?

 The expert systems are the computer applications developed to solve complex
problems in a particular domain, at the level of extra-ordinary human
intelligence and expertise.

Characteristics of Expert Systems

• High Performance: The expert system provides high performance for solving
any type of complex problem of a specific domain with high efficiency and
accuracy.

• Understandable: It responds in a way that can be easily understandable by
the user. It can take input in human language and provides the output in the
same way.

• Reliable: It is much reliable for generating an efficient and accurate output.

• Highly responsive: ES provides the result for any complex query within a very
short period of time.

• Right on Time Reaction: An Expert System in Artificial Intelligence
interacts in a very reasonable period of time with the user. The total
time must be less than the time taken by an expert to get the most
accurate solution for the same problem.

• Flexible: It is vital that it remains flexible as it the is possessed by an
Expert system.

• Effective Mechanism: Expert System in Artificial Intelligence must have
an efficient mechanism to administer the compilation of the existing
knowledge in it.

• Capable of handling challenging decision & problems: An expert system
is capable of handling challenging decision problems and delivering
solutions.

Three common methods of knowledge representation evolved over the
years are IF-THEN rules, Semantic networks and Frames. (already
discussed in previous classes)

Why Expert systems are required?

Capabilities of Expert Systems

The expert systems are capable of :

• Advising

• Instructing and assisting human in
decision making

• Demonstrating

• Deriving a solution

• Diagnosing

• Explaining

• Interpreting input

• Predicting results

• Justifying the conclusion

• Suggesting alternative options to a
problem

They are incapable of −

• Substituting human decision makers

• Possessing human capabilities

• Producing accurate output for
inadequate knowledge base

• Refining their own knowledge

Examples of the Expert System:

 Below are some popular examples of the Expert System:

• DENDRAL: It was an artificial intelligence project that was made as a
chemical analysis expert system. It was used in organic chemistry to detect
unknown organic molecules with the help of their mass spectra and
knowledge base of chemistry.

• MYCIN: It was one of the earliest backward chaining expert systems that
was designed to find the bacteria causing infections like bacteraemia and
meningitis. It was also used for the recommendation of antibiotics and the
diagnosis of blood clotting diseases.

• PXDES: It is an expert system that is used to determine the type and level
of lung cancer. To determine the disease, it takes a picture from the upper
body, which looks like the shadow. This shadow identifies the type and
degree of harm.

• CaDeT: The CaDet expert system is a diagnostic support system that can
detect cancer at early stages.

The process of Building An Expert Systems

• Determining the characteristics of the problem

• Knowledge engineer and domain expert work in coherence to define
the problem

• The knowledge engineer translates the knowledge into a computer-
understandable language. He designs an inference engine, a
reasoning structure, which can use knowledge when needed.

• Knowledge Expert also determines how to integrate the use of
uncertain knowledge in the reasoning process and what type of
explanation would be useful.

Components of Expert System

 An expert system mainly consists of three components:

• User Interface

• Inference Engine

• Knowledge Base

1. User Interface
• With the help of a user interface, the expert system interacts with the user,

takes queries as an input in a readable format, and passes it to the inference
engine. After getting the response from the inference engine, it displays the
output to the user. In other words, it is an interface that helps a non-expert
user to communicate with the expert system to find a solution.

2. Inference Engine(Rules of Engine)
• The inference engine is known as the brain of the expert system as it is the

main processing unit of the system. It applies inference rules to the
knowledge base to derive a conclusion or deduce new information. It helps in
deriving an error-free solution of queries asked by the user.

• With the help of an inference engine, the system extracts the knowledge from
the knowledge base.

There are two types of inference engine:
• Deterministic Inference engine: The conclusions drawn from this type of

inference engine are assumed to be true. It is based on facts and rules.
• Probabilistic Inference engine: This type of inference engine contains

uncertainty in conclusions, and based on the probability.

Inference engine uses the below modes to derive the solutions:

• Forward Chaining: It starts from the known facts and rules, and applies the
inference rules to add their conclusion to the known facts.

• Backward Chaining: It is a backward reasoning method that starts from the
goal and works backward to prove the known facts.

3. Knowledge Base

• The knowledgebase is a type of storage that stores knowledge acquired
from the different experts of the particular domain. It is considered as big
storage of knowledge. The more the knowledge base, the more precise will
be the Expert System.

• It is similar to a database that contains information and rules of a particular
domain or subject.

• One can also view the knowledge base as collections of objects and their
attributes. Such as a Lion is an object and its attributes are it is a
mammal, it is not a domestic animal, etc.

Components of Knowledge Base
• Factual Knowledge: The knowledge which is based on facts and accepted by knowledge engineers

comes under factual knowledge.

• Heuristic Knowledge: This knowledge is based on practice, the ability to guess, evaluation, and
experiences.

• Knowledge Representation: It is used to formalize the knowledge stored in the knowledge base
using the If-else rules.

• Knowledge Acquisitions: It is the process of extracting, organizing, and structuring the domain
knowledge, specifying the rules to acquire the knowledge from various experts, and store that
knowledge into the knowledge base.

Participant in Expert Systems Development

• No memory Limitations: It can store as much data as required and can memorize it
at the time of its application. But for human experts, there are some limitations to
memorize all things at every time.

• High Efficiency: If the knowledge base is updated with the correct knowledge, then it
provides a highly efficient output, which may not be possible for a human.

• Expertise in a domain: There are lots of human experts in each domain, and they all
have different skills, different experiences, and different skills, so it is not easy to get
a final output for the query. But if we put the knowledge gained from human experts
into the expert system, then it provides an efficient output by mixing all the facts and
knowledge

• Not affected by emotions: These systems are not affected by human emotions such
as fatigue, anger, depression, anxiety, etc.. Hence the performance remains constant.

• High security: These systems provide high security to resolve any query.

• Considers all the facts: To respond to any query, it checks and considers all the
available facts and provides the result accordingly. But it is possible that a human
expert may not consider some facts due to any reason.

• Regular updates improve the performance: If there is an issue in the result provided
by the expert systems, we can improve the performance of the system by updating
the knowledge base.

Applications of Expert System:

• The following table shows where ES can be applied.

Advantages of Expert System

• These systems are highly reproducible.

• They can be used for risky places where the human presence is not safe.

• Error possibilities are less if the KB contains correct knowledge.

• The performance of these systems remains steady as it is not affected by emotions,
tension, or fatigue.

• They provide a very high speed to respond to a particular query.

Limitations of Expert System

• The response of the expert system may get wrong if the knowledge base contains
the wrong information.

• Like a human being, it cannot produce a creative output for different scenarios.

• Its maintenance and development costs are very high.

• Knowledge acquisition for designing is much difficult.

• For each domain, we require a specific ES, which is one of the big limitations.

• It cannot learn from itself and hence requires manual updates.

Expert System Shells

• An Expert system shell is a software development environment. It contains

the basic components of expert systems. A shell is associated with a
prescribed method for building applications by configuring and
instantiating these components.

Shell components and description:

• The generic components of a shell : the knowledge acquisition, the
knowledge Base, the reasoning, the explanation and the user interface are
shown below. The knowledge base and reasoning engine are the core
components.

All these components are described in the next slide.

• Knowledge Base:

A store of factual and heuristic knowledge. Expert system tool provides
one or more knowledge representation schemes for expressing
knowledge about the application domain. Some tools use both Frames
(objects) and IF-THEN rules. In PROLOG the knowledge is represented
as logical statements.

■ Reasoning Engine
Inference mechanisms for manipulating the symbolic information and knowledge in
the knowledge base form a line of reasoning in solving a problem.
The inference mechanism can range from simple modus ponens backward chaining
of IF-THEN rules to Case-Based reasoning.

Knowledge Acquisition subsystem

A subsystem to help experts in build knowledge bases. However, collecting
knowledge, needed to solve problems and build the knowledge base, is the biggest
bottleneck in building expert systems.

Explanation subsystem

A subsystem that explains the system's actions. The explanation can range from
how the final or intermediate solutions were arrived at justifying the need for
additional data.

User Interface

A means of communication with the user. The user interface is generally not a part
of the expert system technology. It was not given much attention in the past.
However, the user interface can make a critical difference in the pe eived utility of
an Expert system.

Explanation - Expert System

• Most expert systems have explanation facilities that allow the user to ask

questions - why and how it reached some conclusion.

Explanation

• Most expert systems have explanation facilities that allow the user to ask
questions - why and how it reached some conclusion.

• The questions are answered by referring to the system goals, the rules being
used, and existing problem solving. The rules typically reflect empirical, or
"compiled" knowledge. They are codes of an expert's rules of thumb, not the
expert's deeper understanding.

Example :

Dialog with an expert system designed to give advice on car problems.

System Does the car start ?

User No.

System Does the engine turn over ?

User Yes.

System Do you smell gas ?

User Yes

System Recommendation - Wait 5 minutes and try again.

User Why ?

System I used the rule:

If not start, and engine_turn_over, and smell_gas

Then recommendation is 'Wait 5 minutes and try again‘

User

Note : The rule gives the correct advice for a flooded car, and knows the questions to be ask to

determine if the car is flooded, but it does not contain the knowledge of what a flooded car is and

why waiting will help.

Types of Explanation

There are four types of explanations commonly used in expert systems.

Rule trace reports on the progress of a consultation;

‡ Explanation of how the system reached to the given conclusion;

‡ Explanation of why the system did not give any conclusion.

Explanation of why the system is asking a question;

knowledge acquisition
Introduction
• Knowledge acquisition is the process of extracting, structuring and organizing

knowledge from one source, usually human experts, so it can be used in
software such as an ES. This is often the major obstacle in building an ES.
There are three main topic areas central to knowledge acquisition that require
consideration in all ES projects. First, the domain must be evaluated to
determine if the type of knowledge in the domain is suitable for an ES.
Second, the source of expertise must be identified and evaluated to ensure
that the specific level of knowledge required by the project is provided. Third,
if the major source of expertise is a person, the specific knowledge acquisition
techniques and participants need to be identified.

Theoretical Considerations
• An ES attempts to replicate in software the reasoning/pattern-recognition

abilities of human experts who are distinctive because of their particular
knowledge and specialized intelligence. ES should be heuristic and readily
distinguishable from algorithmic programs and databases. Further, ES should
be based on expert knowledge, not just competent or skillful behavior.

• Domains

Several domain features are frequently listed for consideration in determining whether an ES is
appropriate for a particular problem domain. Several of these caveats relate directly to
knowledge acquisition. First, bona fide experts, people with generally acknowledge expertise in
the domain, must exist. Second, there must be general consensus among experts about the
accuracy of solutions in a domain. Third, experts in the domain must be able to communicate
the details of their problem solving methods. Fourth, the domain should be narrow and well
defined and solutions within the domain must not require common sense.

• Experts

Although an ES knowledge base can be developed from a range of sources such as textbooks,
manuals and simulation models, the knowledge at the core of a well developed ES comes from
human experts. Although multiple experts can be used, the ideal ES should be based on the
knowledge of a single expert. In light of the pivotal role of the expert, caveats for choosing a
domain expert are not surprising. First, the expert should agree with the goals of the project.
Second, the expert should be cooperative and easy to work with. Third, good verbal
communication skills are needed. Fourth, the expert must be willing and able to make the
required time commitment (there must also be adequate administrative/managerial support
for this too).

• Knowledge Acquisition Technique

At the heart of the process is the interview. The heuristic model of the domain is usually
extracted through a series of intense, systematic interviews, usually extending over a period of
many months. Note that this assumes the expert and the knowledge engineer are not the same
person. It is generally best that the expert and the knowledge engineer not be the same person
since the deeper the experts' knowledge, the less able they are in describing their logic.
Furthermore, in their efforts to describe their procedures, experts tend to rationalize their
knowledge and this can be misleading.

General suggestions about the knowledge acquisition process are summarized in rough
chronological order below:

• Observe the person solving real problems.

• Through discussions, identify the kinds of data, knowledge and procedures required to solve
different types of problems.

• Build scenarios with the expert that can be associated with different problem types.

• Have the expert solve a series of problems verbally and ask the rationale behind each step.

• Develop rules based on the interviews and solve the problems with them.

• Have the expert review the rules and the general problem solving procedure.

• Compare the responses of outside experts to a set of scenarios obtained from the project's
expert and the ES.

Note that most of these procedures require a close working relationship between the
knowledge engineer and the expert.

Practical Considerations

The preceding section provided an idealized version of how ES projects
might be conducted. In most instances, the above suggestions are
considered and modified to suit the particular project. The remainder
of this section will describe a range of knowledge acquisition
techniques that have been successfully used in the development of ES.

• Operational Goals

• Pre-training

• Knowledge Document

• Scenarios

• Interviews

